A Hypothesis on Complex of Tropical and Extratropical Cyclones for Typhoon in the Middle Latitudes

II. Synoptic Structure of Typhoons Louise, Kezia and Jane Passing over the Japan Sea

By M. Sekioka

Meteorological Research Institute, Kyoto University, Kyoto

(Manuscript received 15 September, 1956)

§ 1. Synoptic structure of Typhoon Louise

1. Typhoon Louise (1955) who passed over the Japan Sea, maintaining her central pressure of ca. 980 mb and showing no apparent redevelopment (see Fig. 1), is selected to confirm our hypothesis on complex of tropical and extratropical cyclones, derived from the synoptic analysis of redeveloped Typhoon Marie. The examination was carried out in the same idea mentioned in the first paper [3].

2. Separating her Secondary Typhoon from 3-hourly surface weather charts during her traverse through Kyushu, we obtained the characteristic aspects of her Main Typhoon; radius of inner region (b') of 200 km and lowering of the central pressure from the surroundings (π') of 30 mb. The paths of the Main and Secondary Typhoons during this period are shown in Fig. 2.

3. The characteristic aspects of the Main Typhoon, analyzed in 2, are same as those of Marie. It can be allowed to use the following supposition for the Main Typhoon during its passage over the Japan Sea, as in case of Marie; (i) radius of inner region (b') is unchanged, and (ii) damping rate (K) is 0.02. Thus, we can calculate the 3-hourly values of π' taking π₀' of 30 mb at 0900 JST, Sept. 30. These values are listed in Table 1. Now we can prepare the tracing paper on which the 3-hourly pressure field of the Main Typhoon is copied, as an available tool for the following analysis.

4. The separation of the accompanying extratropical cyclone for the case of Marie, had been carried out by the assumption that the Main Typhoon travelled along the straight path with a uniform speed. But this simplified assumption can not be applied to the present case, for it is supposed that the Louise’s Main Typhoon must have travelled along the curved path by the following evidences. The analyzed path (from 2100 JST, Sept. 29 to 0900 JST, Sept. 30, see Fig. 2) of the Main Typhoon does not show the...
A Hypothesis on Complex of Tropical and Extratropical Cyclones

Fig. 2. Paths of Main Typhoon, Secondary Typhoon and Extratropical Cyclone:

--- x --- Path of Main Typhoon, from 2100 JST, Sept. 29 to 0900 JST, Oct. 1 (x---x--- analyzed by the method in §1, 2; ---x--- Obtained by the trial method).

x---x--- Path of Secondary Typhoon, from 2100, Sept. 29 to 0600, Sept. 30.

--- ● --- Path of Extratropical Cyclone, from 0300, Sept. 30 to 0900, Oct. 1.

--- straight line, and its position at 0900 JST, Oct. 1 may be roughly identified with one of the double center on the surface weather chart (see Fig. 5). The appearance of this double center may be understood as a result of a chance that the decaying Main Typhoon and the developing extratropical cyclone have nearly equal intensities. We connect, for the path of the Main Typhoon over the Japan Sea, the two known points, initial point (at 0900 JST, Sept. 30) and one of the double center with a smooth curve, as the first approximation.

5. Thus, we can determine the central position of the Main Typhoon, considering the following restrictions:

(i) The Main Typhoon locates its central position near the curve presented in Section 4.

(ii) The pressure field of the accompanying extratropical cyclone, obtained by elimination of the field of the Main Typhoon using the tracing paper already prepared, must satisfy the following characters.

(a) The center of the extratropical cyclone has its position near the intersection point of warm and cold fronts estimated by the extrapolation of them, a part of which appears on the surface weather chart.

(b) The isobars within the warm sector of that extratropical cyclone are nearly straight lines.

(iii) The successive 3-hourly central positions of the Main Typhoon lie on a smooth curve.

After some trials, we can find out the path of the Main Typhoon and of the accompanying extratropical cyclone, as shown in Fig. 2. It is seen from this analysis, that the northern one of the double center refers to the Main Typhoon and the other to the accompanying extratropical cyclone.

6. The composite charts of these two

Table 1.

<table>
<thead>
<tr>
<th>Date</th>
<th>0900 JST Oct. 1</th>
<th>1200</th>
<th>1500</th>
<th>1800</th>
<th>2100</th>
<th>0000</th>
<th>0300</th>
<th>0600</th>
<th>0900</th>
</tr>
</thead>
<tbody>
<tr>
<td>p'(mb)</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>19</td>
</tr>
</tbody>
</table>

cyclonic systems analyzed in this way are shown in the bottom of Figs. 3-5, and the estimated values of the central pressure of the separated extratropical cyclone (p_c) are listed in Table 2. Application of Petterssen's Method [2] to the separated extratropical cyclone, as in the case of Marie, presents a comparably good result as shown in Table 3.

7. The wind records at Tomakomai, Sapporo and Rumoi, which show a passage of the weak wind zone, are to be noticed (see Fig. 6). These stations are located in the intermediate region of the two paths. While the records at Haboro and Aomori, out of this region, have not such a passage of the remarkable weak wind zone (see Fig. 6). This weak wind zone did not occur on the passage of the central portion of typhoon. Therefore, it was not the TYPHOON EYE. Such a remarkable phenomenon can be understood by the superposition of the Main Typhoon and accompanying extratropical cyclone, as already mentioned in the first paper. The above mentioned matters are shown more illustratively in Fig. 7, which represents the detailed resultant pressure field.

Fig. 3 (a)

Fig. 3 (b)

Figs. 3, 4 and 5; (a) Surface Weather Chart, (b) Composite Chart of Main Typhoon and Extratropical Cyclone (Dotted and dashed lines represent the pressure field of Main Typhoon and numerals on them indicate the pressure lowering from surroundings).

Fig. 4 (a)

Fig. 4 (b)
obtained by superposition of these two cyclonic systems. This matter of fact is considered as the principal evidence which supports indirectly our hypothesis.

§ 2 Synoptic structure of Typhoon Kezia

1. Typhoon Kezia (1950) which decayed slowly over the Japan Sea (see Fig. 8) is selected to examine whether the slowly decaying typhoon is also accompanied by extratropical cyclone.

2. The characteristic aspects of the Main Typhoon during its traverse through Kyushu, are obtained as follows; radius of inner region $b' = 180$ km and lowering of the central pressure from surroundings $\pi' = 20$ mb. The damping rate of the Main Typhoon, 0.023 is evaluated by Matano's formula [1]. The 6-hourly values of π', taking π_0' of 20 mb at 0300 JST, Sept. 14, are listed in Table 4.

<table>
<thead>
<tr>
<th>Date</th>
<th>0000 JST</th>
<th>0300</th>
<th>0600</th>
<th>0900</th>
<th>1200</th>
<th>1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_c (mb)</td>
<td>1007</td>
<td>1003</td>
<td>1000</td>
<td>998</td>
<td>998</td>
<td>997</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Date</th>
<th>1800</th>
<th>2100</th>
<th>0000</th>
<th>0300</th>
<th>0600</th>
<th>0900</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_c (mb)</td>
<td>996</td>
<td>994</td>
<td>993</td>
<td>992</td>
<td>990</td>
<td>989</td>
</tr>
</tbody>
</table>

Table 3.

<table>
<thead>
<tr>
<th>Reference Time</th>
<th>Equation for Pressure Deepening</th>
<th>Expected value of the Central Pressure (mb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 JST Sept. 30</td>
<td>$\Delta p = -3.5t + 0.27t^2$</td>
<td>1800 JST Sept. 30</td>
</tr>
<tr>
<td>1800</td>
<td>$\Delta p = -4.0t + 0.35t^2$</td>
<td>994</td>
</tr>
<tr>
<td>2100</td>
<td>$\Delta p = -3.0t + 0.59t^2$</td>
<td>993</td>
</tr>
<tr>
<td>0000 Oct. 1</td>
<td>$\Delta p = -5.0t + 0.26t^2$</td>
<td>992</td>
</tr>
<tr>
<td>0300</td>
<td>$\Delta p = -4.5t + 0.39t^2$</td>
<td></td>
</tr>
<tr>
<td>0300</td>
<td>$\Delta p = -4.0t + 0.12t^2$</td>
<td></td>
</tr>
<tr>
<td>p_c (mb)</td>
<td>996</td>
<td>994</td>
</tr>
</tbody>
</table>
Fig. 6. Wind Records at Tomakomai, Sapporo, Haboro, and Aomori.

Fig. 7. Resultant Pressure Field of Main Typhoon and Extratropical Cyclone, at 0700 JST, Oct. 1.
two paths shows the passage of the weak wind zone, while that at Esashi out of this region does not show such one (see Table 6).

§ 3. Synoptic structure of Typhoon Jane

1. It is found, in Fig. 12, that Typhoon Jane (1950) also decayed slowly over the Japan Sea.

2. The characteristic aspects of the Main Typhoon during its passage through Shikoku and Kinki, are analyzed as follows; $b' = 180$ km

3. The double center which suggests the central position of the Main Typhoon, appears on the surface weather chart at 0900 JST, Sept. 15, and analyzed path of the Main Typhoon before 0300 JST, Sept. 14 is not straight (see Fig. 9). Thus, the path of the Main Typhoon over the Japan Sea cannot be supposed as straight, and the analysis is performed by the same way as in the case of Louise. The paths of the Main Typhoon and the extratropical cyclone are shown in Fig. 9.

4. The composite charts, thus obtained, are shown in Figs. 10 and 11. The estimated central pressures of the accompanying extratropical cyclone (p_c) are listed in Table 5. Also in the present case, the wind observation at Rumoi in the intermediate region of

Table 4.

<table>
<thead>
<tr>
<th>Date</th>
<th>0300 JST</th>
<th>0900 JST</th>
<th>1500 JST</th>
<th>2100 JST</th>
<th>0300 Sept. 14</th>
<th>0900 Sept. 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>p'(mb)</td>
<td>20</td>
<td>17</td>
<td>15</td>
<td>13</td>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>

Figs. 10 and 11 (see legend under Figs. 3, 4 and 5).

Table 5.

<table>
<thead>
<tr>
<th>Date</th>
<th>1500 JST Sept. 13</th>
<th>2100</th>
<th>0300 Sept. 14</th>
<th>0900</th>
<th>1500</th>
<th>2100</th>
<th>0300 Sept. 15</th>
<th>0900</th>
</tr>
</thead>
<tbody>
<tr>
<td>p_e(mb)</td>
<td>1004</td>
<td>1002</td>
<td>1002</td>
<td>1000</td>
<td>998</td>
<td>996</td>
<td>995</td>
<td>995</td>
</tr>
</tbody>
</table>
4. The composite charts of these two cyclonic systems are shown in bottom of Figs. 14 and 15, and the estimated central pressures of the accompanying extratropical cyclone (p_c) are listed in Table 8. The passage of the weak wind zone is found at Hakodate in the intermediate region of these two paths, while Urakawa out of this region is being covered by relatively strong wind during that period (see Table 9).

and $p'=20\text{ mb}$. The values of p' over the Japan Sea, using $K=0.023$, are listed in Table 7, where p_0' is 20 mb at 1500 JST, Sept. 3.

3. The path of this typhoon is directed approximately north-eastward before her landing on Japan (see Fig. 12), as in the case of Marie. We can extrapolate straightly the path of the Main Typhoon, which is obtained by the analysis during its passage over land, to obtain its successive positions over the Japan Sea as shown in Fig. 13.
The synoptic study for Typhoon Marie which redeveloped over the Japan Sea, presented the result that this typhoon is a complex system of the Main Typhoon and the extratropical cyclone, and that the apparent redevelopment of this typhoon is not caused by the Main Typhoon, but due to the development of accompanying extratropical cyclone [3]. The similar result is obtained in the present paper, after the synoptic analyses for Typhoons Louise, Kezia and Jane which ma-
intain or weaken their central pressure over the Japan Sea. Consequently, we may suppose that almost all the typhoon which entered into the Japan Sea have the same structure given by our hypothesis.

Acknowledgements

The writer wishes to express his indebtedness and thanks to Professor Namekawa, the Director of Meteorological Research Institute of Kyoto University, who gave him kind guidance. And, moreover, the writer is also indebted to the Directors of the Meteorological Observatories in Japan, who presented the data of these typhoons to aid this investigation.

References