Gd–Eu–Co 薄膜の強磁性共鳴
Ferromagnetic Resonance of Amorphous Gd–Eu–Co Alloy Thin Films

脇島 修・植村寿公*・奥野 光**・柳 陽**
大阪府科学教育センター，大阪市住吉区葛田 4-13-23（●558）
*工業技術院・化学技術研究所，茨城県筑波郡ちが谷町東 1-1（●305）
**千葉大学工学部電気工学科，千葉市弥生町 1-33（●260）

O. Wakishima, T. Uemura,* H. Okuno** and Y. Sakaki**
Sci. Education Inst. of Osaka Pref.,
13-23, Karita 4-chome, Sumiyoshi-ku, Osaka, 558
*National Chemical Lab. for Industry,
1, Yatake-higashi 1-chome, Tsukuba-gun, Ibaraki, 305
**Dept. of Electrical Engng., Chiba Univ.,
33, Yayoicho 1-chome, Chiba, 260

The ternary system which a rare earth component is doped in Gd–Co alloy is expected to have a variety of magnetic properties. We prepared (Gd1-xCo1-2xEu)x alloy thin films (x=0.85, 0≤y≤0.10) and measured the ferromagnetic resonance in a temperature region from 300 K to 400 K and also at 77 K. The effective g-value was always greater than that at 300 K and suddenly increased at about 10 at.% Eu. A possible model to explain the concentration dependence of g-value results in the linear decrease of Co moment with increase of Eu concentration.

1. 緒 言

希土類-遷移金属合金の磁性への関心は近年非常に高まりつつある。一つの理由は、結晶的にはアモルファスであるにもかかわらず、磁気的には規則的な配列が実現することである。その典型的な物質は、Gd-Co, Gd-Feであり、フェリ磁性状態が実現する。Gd と Co, Gd と Fe は無秩序でありながら、その磁気モーメントは反磁磁性的に配列している。つまり、希土類金属 Gd と遷移金属 Co, Fe の磁気モーメントが、交換相互作用が負であるため逆に向いている。それぞれの部分格子の磁化が互いに反对を向き、全体の磁化が相殺する濃度が存在する、その濃度のことを、補償濃度とよんでいる。

Gd-Co 合金系においては、Gd20Co80 が補償濃度1)で、この濃度近傍で種々の物理量に異常が現れる。フェリ磁性体の共鳴を扱うとき、g-値に発散がみられる。一般にフェリ磁性体の有効 g-値は、個々の要素の g-値で表されている。二成分系の Tsuya-Wangness の公式2)〜4)に従う。この二元系に、もう一つの遷移金属ある

1) 此は興味ある。Mo を添加した Gd-Co-Mo 系5)が詳しく調べられているが、我々は、3 値とされた非磁性になる Eu に目をつけ、Gd-Co を Eu で希釈することを考えた。
Gd-Eu-Co 薄膜をスパッタで作製し、この系の磁気的性質を強磁性共鳴吸収 (FMR) を使って、有効 g 値などの振舞いを調べた。Eu の単純な希釈系になると予想したが、実験結果は反するものであった。以下、その実験結果を説明するために、一つのモデルを考え、磁気的配列を明らかにしようと試みた。

2. 実験方法

2.1 試料作製

薄膜は高周波マグネトロンスパッタリングによって作製された。ターゲットは、直径 10 cm の Co 円板上に、Gd と Eu を重ねて、その面積比を変化させることで濃度を制御した。基板はスライドガラスを用い、スパッタ中は水冷されている。Gd と Co の比は、ほぼ 15:85 に保たれ、補償濃度より Co 濃度は大である。膜厚は 3000 〈前〉で、Eu 濃度は 0〜10 at.%Eu まで変化させた。実験は 6 種類の試料で行ったが、それぞれ
Table 1. List of Samples

<table>
<thead>
<tr>
<th>Concentration (at.%)</th>
<th>Gd</th>
<th>Eu</th>
<th>Co</th>
<th>x</th>
<th>y</th>
<th>Thickness (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.4</td>
<td>0.0</td>
<td>85.6</td>
<td>4.0</td>
<td>0.856</td>
<td>0.000</td>
<td>3600</td>
</tr>
<tr>
<td>14.5</td>
<td>0.7</td>
<td>84.8</td>
<td>4.0</td>
<td>0.854</td>
<td>0.007</td>
<td>2400</td>
</tr>
<tr>
<td>14.7</td>
<td>2.8</td>
<td>82.5</td>
<td>4.0</td>
<td>0.848</td>
<td>0.028</td>
<td>2400</td>
</tr>
<tr>
<td>14.9</td>
<td>5.7</td>
<td>79.4</td>
<td>4.0</td>
<td>0.842</td>
<td>0.057</td>
<td>2400</td>
</tr>
<tr>
<td>15.0</td>
<td>7.2</td>
<td>77.8</td>
<td>4.0</td>
<td>0.838</td>
<td>0.072</td>
<td>2400</td>
</tr>
<tr>
<td>15.2</td>
<td>10.3</td>
<td>74.5</td>
<td>4.0</td>
<td>0.831</td>
<td>0.103</td>
<td>2400</td>
</tr>
</tbody>
</table>

Fig. 1 Typical FMR spectra for Gd_{1-x}Eu_xCo_{48} at 77 K when the external magnetic field is parallel H_\parallel and perpendicular H_\perp to the film plane.

Fig. 2 Eu-concentration dependence of perpendicular and parallel resonance field at 300 K and 77 K.

\[\omega/\gamma = \left| H_\perp (H_\parallel + 4\pi M_{\text{eff}}) \right|^{1/2} \]

4\pi M_{\text{eff}} = 4\pi M_\perp - H_\perp, \quad \gamma = \gamma_e/2mc \quad \text{である。} \omega/2\pi \text{はマイクロ波の周波数を、} \gamma \text{は磁気回転比を、} H_\perp \text{は垂直異方性磁場を表している。} M_\perp \text{は試料の飽和磁化を示している。}

有効磁化 M_{eff} と g 値は、式(1), (2)を用いて、それぞれの試料に対して求められる。300 K と 77 K における g 値の Eu 濃度依存性を下の図に示す。300 K では、g 値は徐々に増加する傾向にある。77 K での g 値は常温よりも常に大きく、約 10 at.% Eu の濃度近傍で異常に大きい値を示している。以下に示す Tsuya-Wangness の式から、それを導く方法を温度変化するため g 値が変化する。また Gd, Co 各々の g 値の温度依存性は、このことから、Gd-Eu-Co 系はマーラ磁性状態を保持していると推測される。

Gd, Co の二元系において、g 値は次のように表される。

\[g = \frac{-1(1-x)M_\text{Gd} + xM_\text{Co}}{-1(1-x)M_\text{Gd} + xM_\text{Co}} \]

M_{\text{Gd}}, M_{\text{Co}} \text{は Gd, Co の格子に対する磁化を、} g_{\text{Gd}}, g_{\text{Co}} \text{は Gd, Co それぞれの} g \text{値を表す。全体の磁化は、} M = \frac{-1(1-x)M_\text{Gd} + xM_\text{Co}}{-1(1-x)M_\text{Gd} + xM_\text{Co}} \text{で表される。Gd と Co が反強磁性的に結合しているなら、磁化の補償点が存在する。この時、} g \text{値はフェルミ磁性体特有の振舞いをする。}

Eu を添加した系は、Eu が 3 値であるとすれば希釈系になると考えられる。今、Gd-Co 系は補償濃度よりも

日本応用磁気学会誌, Vol. 11, No. 2, 1987
Fig. 3 Eu-concentration dependence of effective g-value at 300 K and 77 K.

Co-richであるので、Eu を添加した Gd–Eu–Co 合金系には補価点は存在しないはずである。しかし、10 at.%Eu 付近で、g 値が発散する傾向にある。この濃度依存性から、Co モーメントは、Gd と Eu のモーメントによってほとんど相殺されていなければならない。FMR の測定は 400 K まで行われたが、キュリートは求められなかった。それぞれの副格子磁化の温度依存性が評価できなかった。ここに、77 K で副格子磁化が飽和していると考えられるので、実験データの解析は 77 K で行うこととする。

FMR の実験結果を説明するモデルについて、以下議論を行う。式 (3) で示される公式を三元系に発展させることを試みる。Eu の格子磁化を M_{Eu}、g 値を g_{Eu} として、(Gd1-x,Co)x, Eu y の g 値を示す。

$$
g = -\frac{(1-x)(1-y)M_{Gd} + x(1-y)M_{Co} + yM_{Eu}}{(1-x)(1-y)M_{Gd}/g_{Gd} + x(1-y)M_{Co}/g_{Co} + yM_{Eu}/g_{Eu}}$$

(4)

で、飽和磁化は、

$$\langle M \rangle = -\langle 1-x \rangle (1-y)M_{Gd} + x(1-y)M_{Co} + yM_{Eu}$$

と表される。部分格子磁化を $M_i = n_i \mu_B (i=Gd, Co, Eu)$ と置く。ここに、μ_B は個々の元素の磁気モーメントを表し、n_i は単位体あたりの格子点数、μ_B は Bohr 磁子を表す。

$$\mu_{Gd} = 7(\mu_B), \mu_{Co} = 2.0, \mu_{Eu} = 2.0, \mu_{Co} = 2.2$$

を仮定する。最初に Eu を 3 値と考えると、7F_0 で飽和磁気モーメントは 0 で、$\mu_{Eu} = 0$ となる。式 (4) より、μ_{Co} は $y = 0.01$ で最小、$y = 0.09$ で最大となる。このような複雑な Co モーメントの濃度依存性は理解しにくい。

そこで、Eu は 2 値であると考えなければならない。Eu の 2 値の電子状態は $^{4}S_{3/2}$ で、飽和磁気モーメントは 7 μ_B となる。この磁気モーメントが Gd と同様に Co と反平行するとする。この場合、μ_{Co} を計算すると $y = 0.10$ で 3 μ_B となり、通常の $\mu_{Co} = 1.7 \mu_B$ よりも大きい値を持つことになる。したがって、このモデルは否定せざるを得ない。最後に Co モーメントに平行な場合を考える。一般に軽希土類（Eu, Nd など）の場合は、重希土類（Gd, Tb など）の場合は逆に、遷移金属（Fe, Co）の磁気モーメントと平行になるといわれている。我々は、Eu が 2 値となり Co と磁気モーメントが平行になるモデルを採用する。このモデルについて、式 (4) から μ_{Co} を計算すると Fig. 4 のように、濃度の増加に伴い、長線的に減少する。この直線を延長すると、約 16 at.%Eu で Co のモーメントが消失する。なお、直線は最小二乗法で求められたものである。このような傾向は Gd–Co–Mo にもみられ、Mo の増加とともに Co の磁気モーメントは減少している。

Fig. 4. Eu-concentration dependence of calculated μ_{Co} at 77 K from Tsuya-Wangness formula.

日本応用磁気学会誌, Vol. 11, No. 2, 1987 273
Fig. 5 Eu-concentration dependence of saturation moment μ_s calculated by our model and effective moment μ_{eff} at 77 K.

Eu は Gd-Co-Mo 系と同様に Co モーメントを抑制していると考えられる。おそらく、Eu が 2 倍となった時、その余剰電荷が移動して Co のモーメントを減少させていくと思われる。

さらに、$M_s = n \cdot \mu_s / g_s$ とおき、(Gd$_{1-x}$Co$_x$)$_{1-y}$Eu$_y$ の飽和磁気モーメント μ_s を、上記の Co モーメントの値を用いて計算する。また有効磁化 M_{eff} を有効磁気モーメント $\mu_{\text{eff}}(\mu_B \text{ 単位})$ で表す。この μ_s と μ_{eff} の一致は満足できるものである。これは Fig. 5 に示す。この相違は垂直異方性磁場によるもので、その大きさは 300 Oe 以下となる。

4. 結 語

結果として(Gd$_{1-x}$Co$_x$)$_{1-y}$Eu$_y$ の三元系は、$x \sim 0.85$, $0 \leq y \leq 0.10$ の範囲でフェリ磁性体である。77 K において、$y \sim 0.10$ で磁気補償点を持っていると思われる。最も自然なモデルは Gd と Co のモーメントは反強磁的に、Co と Eu は強磁性に結合するものと考えられる。また、Co のモーメントは Eu 濃度とともに直線的に減少する。

文 献

6) 関沢和子: 磁性体ハンドブック, 近角聡信他編, 朝倉書店（昭和 50）p. 512.

1986 年 12 月 19 日受理, 1987 年 2 月 23 日採録

274 日本応用磁気学会誌, Vol. 11, No. 2, 1987