Co–(Nb, Ta)–Hf 非晶質膜の軟磁気特性

Softmagnetic Properties of Amorphous Co–(Nb, Ta)–Hf Sputtered Films

小倉雄二・植間博

Y. Omata and H. Sakakim

Central Research Laboratory, Matsushita Electric Industrial Co., Ltd., 3–15, Yagumo-nakamachi, Moriguchi, Osaka, 570

Thermal stability of sotmagnetic properties of amorphous Co–(Nb, Ta)–Hf systems with high saturation magnetization (4πM_s) as high as that of Sendust alloy was studied. It was found that Hf-containing films having high 4πM_s (~10000 Gauss), especially Co85Ta15Hf4 alloy, were thermally very stable even up 500°C, while the conventional Co based amorphous films with the same 4πM_s could not tolerate such high temperature annealing.

These Hf-contained films have promising properties as magnetic head core materials for high performance VTR since they can cope with high coercivity media and withstand high temperature fabrication processes.

1. まえがき

Coを主としたMetal–Metal系の非晶質スパッタ蒸着膜は低磁歪で軟磁気特性に優れるだけでなく、その熱的な安定性がMetal–Metaloid系非晶質合金に比べて高く、小型VTRや今後急速な普及が予想される高品位VTRなどの高密度磁気記録を必要とする次世代VTR用磁気ヘッドコア材料としても実用段階に入った1,2)。

一般に非晶質合金は磁気モーメントを有する成分元素と非晶質化を促進する成分元素が異なるために高い磁化を得ることと安定な非晶質を得ることが両立しにくい相対する傾向をもっている。

このような傾向下で高保磁力媒体に対応した従来のセラミック合金膜に匹敵する飽和磁歪密度 B_s~10000 Gauss を有し、かつ、磁気ヘッドの作成上不可欠な高い加工精度及び強度をもった低融点 (mp ~500°C) ガラス熱処理に対しても耐える非晶質材料はこれまで見当たらないかった。Hfを含むCo基非晶質合金については低磁歪をもった軟磁気特性が報告されているが3,4), 本報ではHfを用いた系で上記の条件を満たす特性を確認したのでその磁気特性などを報告する。

2. 実験方法

磁性膜の作成には合金ターゲットを用いた rf-マグネトロンスパッタ蒸着法によって、膜組成は蒸着膜の作成条件 (Arガス圧及び投入電力) の調整することによって合金ターゲット組成に近い任意の組成を選び5), 得られた膜は発光分光分析法 (I.C.P.) によって分析された。磁気特性の評価は、飽和磁歪密度については試料振動型磁力計 (VSM) を、また保磁力 H_K については薄膜用 BH トレーサー、初磁化率 2μ は1 mOe の磁界の大きさを基準としてベクトルインピーダンスメータによって測定された。磁気異方性の変化及び、膜構造の均質性の評価については直径 1.5 mm の円盤試料膜を用いて X band での磁強度共鳴を磁場掃引法によって測定した。また熱処理として示差熱分析計 (DTA)、及び示差熱量分析計 (DSC) の測定を行った。

3. 初磁化率の熱処理性安定性

軟磁気特性の熱安定性の評価方法として非晶質膜の結晶化温度以下の低温で等温熱処理を行った後の膜について、初磁化率特性の変化を調べた。

評価に用いた B_s~10000 Gauss を有する合金系の組成と B_s 値を Table 1 に示す。いずれの系の居溫 温度 T_s は結晶化温度 T_c を上まわるために、熟処理はすべて T_s 以下の強磁性状態で約 500 Oe, 100~150 rpm の回転磁界中で行った (T_s はいずれも約 520°C)。

Fig. 1 は Table 1 に示した B_s~10000 Gauss の各Co–(Nb, Ta)–(Zr, Hf) 各 3 元系非晶質膜の 480°C における等温熱処理を行った後の初磁化率 2μ_s を熱処理時間に
Table 1 Composition and saturation magnetization of Co-(Nb, Ta)-(Zr, Hf) films.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Saturation Magnetization (Gauss)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co$_8$Ta$_8$Hf$_4$</td>
<td>10300</td>
</tr>
<tr>
<td>Co$_8$Nb$_6$Hf$_4$</td>
<td>10500</td>
</tr>
<tr>
<td>Co$_8$Ta$_8$Zr$_4$</td>
<td>10200</td>
</tr>
<tr>
<td>Co$_8$Nb$_6$Zr$_4$</td>
<td>10100</td>
</tr>
</tbody>
</table>

Fig. 1 μ_i-changes by isothermal annealing at 480°C of Co-(Nb, Ta)-(Zr, Hf) films.

Fig. 2 H_c-changes by isothermal annealing at 480°C of Co-(Nb, Ta)-(Zr, Hf) films.

Fig. 3 TTT-diagram of Co-(Nb, Ta)-(Zr, Hf) for thermal stability of softmagnetic properties.

対して示したものである。（μ_i値は1 MHzの値）

同様に、Fig. 1 において Co$_8$Nb$_6$Zr$_4$、Co$_8$Ta$_8$Zr$_4$ 膜においては昇温直後から高い μ_i 値を示すが熱安定性が不十分で等温熱処理における劣化は早い。一方、Hfを含む系においては昇温後も μ_i の改善が著しく、時間による変化、等温熱処理による劣化に対しては他系より耐久、c. d のような極大をもつ熱処理時間依存を示し、熱的に極めて安定であることが分かる。

Fig. 1 において、Co–Nb–Zr 系、及び Co–Ta–Zr 系において短期熱処理時間範囲では μ_i 値の上昇部分をもった極大曲線を示しているはずである。（蒸着直後の膜についてはいずれの系も μ_i ～100）実験では昇温中的短時間（約 10 分）で μ_i の上昇（高周波を含む）が観察されている。これにより、同様の熱処理時間範囲で測定に現れていない。

Fig. 1 で示したいずれの膜も 480°C等温熱処理による μ_i の急激な劣化と合わせて保磁力 H_c についても Fig. 2 のように急な上昇が観察され、透磁率特性の劣化が熱処理によって生じた磁気異方性の増加が原因と予想される。

ここで Fig. 1 の μ_i 値の劣化が急激であることから、各系とも等温熱処理によってμ_iを500 まで減少する時間 “t” を同図中に示したように軟磁気特性の安定性を示す

Fig. 3 に示した TTT図は非晶質材料のような非平衡材料の磁気ヘッドなどの応用で、熱処理を伴う加工を必要とする場合、温度や時間、熱処理回数を状態に応じて任意に選ぶような実用熱処理に対し、軟磁気特性の安定性を観察する基準として極めて有益である。

Fig. 3 から、Co$_8$Ta$_8$Hf$_4$合金がセグメント合金に匹敵するB_i10000 Gaussの高トランジスタ材料でありながら、数
Fig. 4 External field dependence of differential absorption intensity of in-plane FMR. Each line shows angular dependence (0°~180°) of absorption curves. Films were annealed at 480°C.

Fig. 5 External field dependence of differential absorption intensity of in-plane FMR. Each line shows angular dependence (0°~180°) of absorption curves. Films were annealed at 520°C.

480°C 適圧後膜 (Fig. 4) に対しては Co_{58}Nb_{24}Zr_{28} 合金では Hm の外部磁石方向依存が微少で非常に面内異方性が小さいことが分かり, Fig. 1 に示したように極めて高い μr 値が得られることとよく一致する。Co_{58}Ta_{4}Hf_{4} 合金ではこれに対しやや大きな面内の磁気異方性を残しているが (Fig. 4 (b)), いずれの膜においても共鳴吸収頻幅 ΔH (曲線の極大と極小を示す磁界の間隔) は比較的小さい, (ΔH~40 Oe)

一方 520°C 適圧後膜 (Fig. 5) に対しては共鳴吸収頻幅が両系とも ΔH > 100 Oe となり, 結晶化へ向けた膜構造の変化によって各種の誘導磁気異方性の分散や局所的な吸和磁化の不均一, 交絡化によって生じる内部有効磁石が分布した磁気に依存する不均質な状態を示している。この傾向は Fig. 4 及び Fig. 5 から Co-Ta-Hf 系では 480°C 適圧後膜と 520°C 適圧後膜の比較で約 2 倍にとどまるのに対し, Co-Nb-Zr 系では 4~5 倍に相当し, Co-Ta-Hf 系の熱処理による変化が比較的小さいことが分かる。

このように強磁性共鳴による変化からも Co-Ta-Hf 系の熱的な安定性が認められた。

4.2 熱分析

DTA による Co_{58}Ta_{4}Hf_{4} 合金の結晶化温度の測定から Fig. 6 のように 530°C 付近に最も大きな発熱ピーク
Fig. 6 D.T.A. curves of Co$_{80}$Ta$_{15}$H$_{5}$ and Co$_{80}$Nb$_{5}$Zr$_{5}$ films (heating rate; 10 degree/min).

が得られた。Co$_{80}$Nb$_{5}$Zr$_{5}$合金においても530℃付近に結晶化を示す一見明るようなピークを示した。等温熱処理に見られた有素の熱安定性の相違に反して少なくともDTAによる結晶化温度の差はわずかである。Co-Ta-Hf系の優位性はほとんどとみとめられなかった。（T_{w}はピーク温度でなく図中矢印の値）

HF を含む系についてはFig. 1の等温熱処理で得られるμt値の極大をもつ変化と薄膜構造変化との関わりを知る一方法として、Co$_{80}$Ta$_{15}$Hf$_{5}$ 膜の 480℃等温熱処理によってDSCの測定を示したのがFig. 7である。

同図に示したように測定中試料は常に発熱を示し、その発熱量は時間とともに減少するが、Fig. 1の極大に対して約40分付近に発熱の小さな極大が現れた。これは発熱の極大点でそれまでを異なった状態で構造の緩和が起こったためとも解釈でき、この異常がμtの変化と関連をもつことが予想できる。

Fig. 7の等温熱処理でμt<500に劣化した時間に相当する2.5 hrの熱処理の後、引き続き520℃に昇温し、この温度に保持するとDSC曲線はさらに大きな発熱を示し、温度を上げたことによって発熱量が増加することがわかる。

このことは構造の未緩和部分（不結晶化）をかなり残した状態の早い段階で既にμtは劣化していること$^{[12]}$を熱分析の結果からも示すものである。

5. ま と め

Co-(Nb, Ta)-Hf系非晶質膜の検討の結果、特にCo-Ta-Hf系においてセタシスト合金に匹敵する高いB_s値（約10000 Gauss）をもたらし、500℃付近の熱処理に対する実用的な熱安定性を併せもつことを示した。Co-Ta-Hf系の著しい熱安定性は同じB_s値をもつ他のCo基非晶質合金と比べて高いT_{m}をもつためでなく、熱処理による磁気特性の改善や劣化に対して大きな緩和時間をもつことによるものであるが、磁気特性の評価及び熱分析から分かった。

磁気特性に限らず通常の物理的性質はT_{m}以下であってもT_{m}に近い高温で時間保持することで変化することが知られている$^9)$. 非晶質材料の磁気特性の熱安定性はしばしばT_{m}の低下のみでの評価を不十分であり、温度だけでなく同時に時間含有の評価が特に適用上に重要で興味をもつ。本報の10000 Gaussを有するCo-Ta-Hf系は従来のCo基非晶質合金と比較したとき、このことを示す一つの例であるともいえる。

最後に強磁性共鳴実験でご協力いただいた大阪大学理学部伊達宗行先生にお礼申し上げます。また当所のご指導をいただいた当社中央研究所小林グループマネジャーに感謝いたします。さらに熱分析で有益なご討論をいただいた松下テクノリサーチ（株）、村上社員に感謝いたします。

文 献
8) 小保, 他: 第9回日本応用磁気学会概要244 (1985).
1986年12月22日受理、1987年2月23日採録