Nd–Fe–B系焼結磁石における磁気余効定数の着磁界依存性

Magnetizing Field Dependence of the Viscosity Parameter \(S \) of Nd–Fe–B Sintered Magnets

宗像 誠・横孝一郎*・H. Kronmuller**

山形大学工学部、米沢市城南 4-3-16 (☎922)
*住友金属鉱山中央研究所、千葉県市川市中国分 3-18-5 (☎272)
**マックス・プランク研究所、ハイゼンベルク通り 1, 7000 シュトゥットガルト 80, ドイツ

M. Munakata, K. Maki* and H. Kronmüller**

Yamagata Univ., Faculty of Engng., 3-16, Jonan 4-chome, Yoneawa 992
*Central Research Lab, Sumitomo Metal Mining, 18-5, Nakakokubun-cho, Ichikawa, Chiba 272
**Max-Planck-Institut für Metallforschung, Heisenbergstrasse 1, 7000 Stuttgart 80, Deutschland

Magnetizing field dependence of the magnetic viscosity parameter \(S \) was measured for aligned and non-aligned Nd–Fe–B sintered magnets on demagnetizing curves at room temperature. Remarkable change of magnetic aftereffect was observed in the range of lower magnetizing field. Relation between \(S \) and coercivity depending on magnetizing field was studied.

Key words: magnetic aftereffect, magnetic viscosity parameter, Nd–Fe–B sintered magnets, magnetizing field, coercivity

1. はしがき

Nd–Fe–B系磁石は、他の希土類永久磁石[12]と同様に、大きな磁気余効を示すことが知られている。この現象は、材料の磁気的安定性に関連していることから、電子機器応用の上で高信頼性を得るための検討課題でもある。これまでに、保磁力付近の磁気余効を定数 \(S \) で表されるが、その温度変化を求めるには、試料の不可逆磁化率を \(\chi_{\text{mrr}} \) とすると、

\[
S = -kT_{\text{m}} \frac{\chi_{\text{mrr}}}{q}
\]

(2) 式で書けることができる。ここで \(q \) は温度、磁界（試料の内部磁界）に対して決まる磁化反転の活性化エネルギーの関数である。この余効は主磁気余効と呼ばれる、Néelによって磁気モーメントの熱振動が原因であることが理論的に説明されている。その後、さらにGauntらによって一般化が行われ、

\[
q = (dE/dH)_{T_k}
\]

(3) 式が導かれている。\(q \) は、一定温度 \(T_k \) において、活性化エネルギー \(E \) を内部磁界 \(H \) で微分した値に当たる。\(T_k \) と \(T_s \) から\(q \) を消去すると、

\[
S/X_{\text{mrr}} = -kT_{\text{m}}(dE/dH)_{T_k}
\]

(4) 式と書きかえることができる。一方、磁気余効の着磁界依存性が主磁気余効に比べて著しく小さい一方に、保磁力理想的な場合に近いと考えられる。本実験では、配向および無配向のNd–Fe–B系焼結磁石について、磁気余効の内部磁界および着磁界依存性を室温において調べ、それぞれの結果を比較した。

2. 磁気余効定数 \(S \)

磁気余効は、磁化の値が時間の経過に伴って変化する現象である。この変化は磁化に相当する信号フロートと直線となることが実験的に知られている。磁化の値の変化を \(dJ \)、測定時間を \(t \) とすると、

\[
dJ = S \ln t
\]

(1) 式で表される。\(S \) は温度、磁界で決まる定数である。また、(1) 式は温度を \(T_k \) に、試料の不可逆磁化率を \(\chi_{\text{mrr}} \) とすると、

\[
S = -kT_{\text{m}} \frac{\chi_{\text{mrr}}}{q}
\]

(2) 式で書けることができる。ここで \(q \) は温度、磁界（試料の内部磁界）に対して決まる磁化反転の活性化エネルギーの関数である。この余効は主磁気余効と呼ばれる、Néelによって磁気モーメントの熱振動が原因であることが理論的に説明されている。その後、さらにGauntらによって一般化が行われ、

\[
q = (dE/dH)_{T_k}
\]

(3) 式が導かれている。\(q \) は、一定温度 \(T_k \) において、活性化エネルギー \(E \) を内部磁界 \(H \) で微分した値に当たる。\(T_k \) と \(T_s \) から\(q \) を消去すると、

\[
S/X_{\text{mrr}} = -kT_{\text{m}}(dE/dH)_{T_k}
\]

(4) 式と書きかえることができる。一方、磁気余効の着磁界依存性が主磁気余効に比べて著しく小さい一方に、保磁力理想的な場合に近いと考えられる。本実験では、配向および無配向のNd–Fe–B系焼結磁石について、磁気余効の内部磁界および着磁界依存性を室温において調べ、それぞれの結果を比較した。

3. 実験

3.1 試料

試料には仕込み組成 Nd₁₈Fe₇₂B₈₅ 焼結磁石を用いた。
Fig. 1 Magnetizing field dependence of demagnetizing curves for (a) aligned and (b) non-aligned samples.

Fig. 2 Schematic illustration of the process for the measurement of S_n on demagnetizing curve.

次のような方法で行った。消磁状態から超伝導マグネットにより0〜4800 kA/mの範囲で感度し、磁痕曲線上において400〜2000 kA/mの範囲を80 kA/mごとに余効測定時間1800秒で測定した。Fig. 2は磁痕曲線上での余効を測定するための経路点ADを示す。点Aは測定が始まる点であり、外部磁界における磁痕曲線上の点である。この点での曲線の傾きを全磁化率x_{0}として測定する。外部磁界の掃引をこの点で止めると、その直後から余効が始まり磁化が点Aから点Bまで変化する。これを磁化の変化$dx = AB$として測定した後、磁界を点Aから点Cまで約20 kA/mほど戻し、さらに磁界を点Dまで掃引する。経路BCの点Bにおける傾きを逆磁化率x_{RE}として測定する。点Dは次の余効測定が始まる点であり、点Aに相当する。測定点の間隔80 kA/mはADに当たり、経路ADが一つの測定過程として繰り返される。すべての測定値dx, x_{0}, x_{RE}をコンピューターで最小自乗法処理、反磁界補正処理した後、$x_{RE} = x_{0} - x_{RE}$および(7)式から磁気余効定数を求めた。その際、各測定値の半値幅から求めた余効定数の半値幅もエラーパーとして計測した。磁界掃引速度は60 kA/m・min、VSMの安定性は30 minで±0.01%以内である。

4. 実験結果および考察

4.1 S_nの磁界依存性

Fig. 3(a), (b)は、低磁界磁荷と高磁界磁荷の例として、それぞれ磁界H_nが640 kA/mおよび4800 kA/mの磁痕曲線上（Fig. 1(a)）で測定した配向試料のS_n, x_{RE}および内部磁界Hの関係を示す。（a）の場合、S_nは$H = -1200$ kA/mを中心に一つの広いピークを形成している。保磁力を$H_1 = -1200$ kA/mは、ピーク右端の位置とし、そのS_nはほぼ0である。低磁界磁荷では、磁壁の移
Fig. 3 Field dependences of the magnetic viscosity parameter S_v at magnetizing field (a) 640 kA/m and (b) 4800 kA/m for the aligned sample.

Fig. 4 S_v at the field of H_c vs. H_c for aligned and non-aligned samples.

日本応用磁気学会誌 Vol. 15, No. 2, 1991
すると、

\[v_{ac} = kT_0 / S \alpha \]

(8)

で計算される。Fig. 5 は、(8) 式に、\(J_e = 1.2 T, T_0 = 293 K \) および Fig. 4 の \(S \) の値を代入して計算した活性化体積と保磁力の関係を示す。配向・無配向試料ともに、\(v_{ac} \) は保磁力が増加すると単調に減少する。保磁力が 8〜320 kA/m までの範囲では、1/10³程度まで著しく減少している。1×10⁻²⁴ m³ 以下（長さにして 10 nm 以下）の領域では、保磁力は最大値（固有保磁力）に近づき、活性化体積も最小値 0.65×10⁻²⁴ m³ に収束する。以上のように、\(S, v_{ac} \) および \(H_e \) とのあいだには、磁化機構に関連して何らかの対応関係があるものと考えられる。内部磁界、温度、配向に依存する \(S \) から活性化エネルギー \(E \) の解析関数を与えることが必要である。

5. ま と め

Nd-Fe-B 系磁石の配向試料、無配向試料について、磁気余効定数の着磁界依存性を測定した結果、以下のことが観測された。

(1) 磁気余効定数の内部磁界依存性には、(a) 保磁力よりも高い磁化がピークを持つ分布、(b) 保磁力の出現とともに現れ、常に保磁力付近にピークを持つ分布、の二種類の分布が存在する。

(2) 着磁界の大きさにより、保磁力点での磁気余効定数は変化し、保磁力とともに増加する。配向試料と無配向試料ではその増加の仕方が異なる。

(3) 配向・無配向の両試料において、最大保磁力（固

有保磁力）では活性化体積が最小であり、それらの値は 0.65×10⁻²⁴ m³ 程度である。

文 献

1990 年 12 月 5 日受理, 1991 年 2 月 28 日採録

240

日本応用磁気学会誌 Vol. 15, No. 2, 1991