

(Fe–Co)₃Tb 化合物並びに非晶質 Fe₃Tb の磁歪

Magnetostriction of (Fe–Co)₃Tb Compounds and Amorphous Fe₃Tb Alloys

石尾俊二・佐藤健治・宮崎照宣
東北大学工学部

S. Ishio, K. Sato and T. Miyazaki
Faculty of Engng., Tohoku Univ., Aoba, Aramaki, Aoba-ku Sendai 980

1. はじめに

Fe–希土類立方晶ラーベ相化合物は 10⁻³～10⁻⁴ の磁気歪を示しアクチュエーター、センサーなどの実用材料として注目を集めている。これらの超磁歪材料研究は現在まで主として Fe₃R 化合物（R = Tb, Dy, Sm など）を中心にして進められ、高配向性化、高純度化などによって高歪率が達成されている。しかし実用観点に立つと、さらに高度に移動金を含む 2 元 3 元系化合物の歪特性を調べることが必要であり、これは移動金・希土類金属系化合物の超磁歪の発生機構を明らかにする上からも重要である。

非晶質合金分野は一般に軟磁気特性を示すことが知られており、超磁歪材料系非晶質では高歪率が期待される。実際 (Fe₁₋ₓCoₓ)₃Sm 系非晶質合金は 400～600 × 10⁻⁶ の相対歪を有し、かつ相境線と比較した良好な磁歪を示すことが報告されている。Fe₀.₇Co₀.₃Tb (PuNi₃ 型構造) の結晶構造は R 原子に注目すると Fe₂Tb のそれと類似しており、したがって超磁歪を示すと予想される。本報告では (FeCo)₃Tb 化合物ならびに非晶質合金の磁歪特性について報告する。

2. 実験方法

(Fe₁₋ₓCoₓ)₃Tb 化合物多結晶作製に当たっては、各々 99.9% の純度の各金属を秤量後、アーク溶解しボタン状試料とし、さらに 850℃×2 週間の焼純を行った。X 線回折によってこの母材が PuNi₃ 型構造のほぼ準相であることを認めた。歪歪測定にはこのボタン状試料から、その直径方向を長手方向とする短冊状試料（厚さ 0.3 mm，幅 1 mm，長さ約 7 mm）を切り出し試料とした。

非晶質合金の作製には上述の母材を用い、Ar 気圧中で液体急冷を行った。なお液体急冷に際しては、Cu ロール（直径 160 mm）を用い、ロール回転速度 5000 rpm，石英ノズル直管 0.2 mm，噴出压 0.5～1.0 kg/mm² とした。非晶質の作製は x = 0～1.0 の範囲で試みたが x = 0 の試料についてのみ非晶質が形成された。

磁歪は三端子容量計（最小感度 0.2 × 10⁻⁸ Pa）によって最大印加磁界 H = 20 kOe のともに室温および 77 K で測定した。また磁化は、試料振動型磁気メーターによって（最大印加磁界 16 kOe）測定した。

3. 実験結果

Fig. 1 には (Fe₁₋ₓCoₓ)₃Tb 化合物の室温における λ–H 曲線を示した。ここで図中の λₓλ₁ は各々磁界と平行および直角な方向の長さ変化である。λₓ は H = 20 kOe で 400～500 × 10⁻⁶ の値を示す。λ₁ は磁界に対する立ち上がりは Co の増加とともに速くなる。例えば H = 2 kOe での λ₁ の値は x = 0 で約 180 × 10⁻⁶ から x = 1.0 では 300 × 10⁻⁶ に增加している。この傾向はすでに報告されている (Fe–Co)₃Tb の傾向と一致している。Fig. 2 には、77 K での λ–H 曲線を示した。注目すべき点は Co の添加とともに λ₁ および λₓλ₁ が急激に増加している点である。

Fig. 3 には室温および 77 K, 20 kOe での λₓλ₁ の組成依存性を示した。室温における λₓλ₁ は 800～1000
\(\times 10^{-8} \) であり、これは Clark らの \(\text{Fe}_2\text{Tb} \) の室温における測定結果とほぼ一致している。一方 77 K, 20 kOe での磁歪は、\(x \) の増加とともに急速に増加する。すなわち \(x = 0 \) では約 \(1500 \times 10^{-6} \) であるに対し \(x = 1.0 \) では 3000 \(\times 10^{-8} \) に達する。代表的超磁歪材料である \(\text{Fe}_2\text{Tb} \) の \(H = 20 \text{kOe} \) での \(\lambda_{\|} \lambda_{\perp} \) は室温で約 2100, 77 K で約 3300 \(\times 10^{-8} \) 程度である。したがって、\(\text{Co}_3\text{Tb} \) の磁歪は、\(\text{Fe}_2\text{Tb} \) と比較し、室温ではかなり小さいものの、77 K では同程度の磁歪の値を示している。

Fig. 1, 2 で示したように化合物多結晶の \(\lambda-H \) 曲線は \(H=20 \text{kOe} \) でも飽和しない。そこで \(H=10 \sim 20 \text{kOe} \) の \(\lambda \) の値を \(1/H \to 0 \) に外挿し \(\lambda_{\|} \lambda_{\perp} \) を求めた。Fig. 3 に示すように外挿して求めた値は \(H=20 \text{kOe} \) の結果と比較し約 20% の増加するが、その組成依存性の傾向に変化はない。

前述したように非晶質の作製を \(\text{(Fe-Co)}_3\text{Tb} \) 系の全域
Fig. 3 Magnetostriiction (λ_y, λ_z) of (Fe$_1-x$Co$_x$)$_3$Tb compounds measured at room temperature (a) and at 77 K (b). ○, $H=20$ kOe; ●, $1/H=0$.

で試みたが、非晶質は$x=0$においてのみ形成された。そこで$x=0$のλ-H曲線を、先に示した化合物多結晶のそれに比較しFig. 4に示した。室温における非晶質のλ-H曲線は$H=1$～3 kOeで大きく変化し、その後漸増する。一方 77 Kでは、大きな履歴を示すことが特徴である。化合物、非晶質共に $H=20$ kOeでも飽和しないため、飽和磁歪の変化は困難だが、非晶質の磁歪は化合物と比較して約30～40%減少していると考えられる。

Fig. 5には、比較のために非晶質ならびに化合物Fe$_3$Tbの磁化曲線を示した。上述したように非晶質の室温のλは化合物と比較して1～3 kOeの弱磁界で早期立ち上がりを示すが、磁化曲線は化合物のそれと比較して大差がなく、むしろ保磁力は増加の傾向にある。また 77 Kでの非晶質のM-H曲線はλ-H曲線と同様に大きな履歴を示す。

4. 考察
(Fe$_1-x$Co$_x$)$_3$Tb化合物の磁歪において最も注目すべき点は77 Kでの磁歪の大きさがCoの添加とともに増加しCo$_3$Tbにおいては3000×10^{-6}に達する値を示した点である。Co$_3$Tb（PuNi$_2$型構造）中のR原子の配位は立方晶ルーベ相のそれとCaCu$_5$型構造のそれの2:1の割合の配列したものであり、したがってFe$_3$Tbと同程度の超磁歪が予想され、それは今回の結果と一致する。ここで特に注目すべき点は、Fe、Coの元素の置換によるλの大きな変化である。ルーベ相化合物の超磁歪の原因は希土類素の軌道角運動量に対する結晶場効果であると考えられており、理論的には、(1) シングルイオンモデル8), (2) 内部歪に誘導される超磁歪7)がある。2)は特にFe$_3$Tbにおけるλ_{100}とλ_{111}の大きな異方性($\lambda_{111} \gg \lambda_{100}$)を説明するためにCullenら9)によって提案されたものである。しかし (1), (2)のいずれにしても磁歪は希土類元素の結晶場効果によるものと考えられており、
移金属の置換による磁歪の変化を説明することはむずかしい。例えば(1)では移金属元素置換の効果はまず格子常数の変化として取り込まれ、X線回折の結果から求めた格子常数を用いてFe₃Tb, Co₃Tbの磁歪を計算してみるとその間の変化はただかに30%である。これらのFe, Coの置換の磁歪の影響及びFe₃Tbにおいて見られる磁歪の異方性（λ₁₁＞λ₁₀₀）に関しては、今後の理論的研究が必要である。

Fe₃Tb非晶質および核合物の磁歪の磁界依存性は次のような特徴を持つことが明らかになった。

1. Fe₃Tb非晶質の室温のλはH=1〜3kOeの磁場で早し立ち上がりを示すのに対し、化合物のλは磁界とともに徐々に増加する。
2. 非晶質、化合物共に20kOeの磁界でも飽和しない。
3. 非晶質のλおよび磁化は77Kで大きな履歴を示す。

一般に磁歪は磁化方向および測定方向の関数で与えられるが、その反転に対しては対称である。すなわち磁化方向が180°変化するとときには磁化は変化せず、磁化過程が磁化方向の回転で徐々に進行している場合には、M-H曲線とλ-H曲線は対応する。非晶質の室温のλのH=1〜3kOeでの早き立ち上がりは、この磁界領域で磁化方向が容易に90°程度の回転をする成分があることを示している。またそれ以上の磁界でのλの増大は磁化の回転にさらに強磁場を必要とすることを示している。磁化過程における磁石の回転は磁気異方性に支配されている。Fe₃Tb非晶質のλ-H曲線から考えられる磁化過程は例えば、(100)方向の磁化容易軸ととする立方晶の多結晶、あるいはc面を磁化容易面とする一軸結晶多結晶と類似していると考えることができる。ところで低温での非晶質の磁化曲線に見られる巨大な磁気歪は、非晶質中に分布する局所一軸磁気異方性の大きさが低温とともに増大することに起因すると考えられており、λ-H曲線の履歴も同じ原因と考えることができる。これらのことからFe₃Tb非晶質中には大きさに幅広い分布のある局所磁気異方性の存在することが分かる。一方Fe₃Tb化合物では室温、77Kとも磁化曲線はH=1〜2kOeで立ち上がるが、λ-H曲線にはこれに対応する変化が認められない。したがって化合物ではこの磁界領域で磁化反転（もしくは180°磁壁移動）が主となって磁化過程が進行し、そのためにλ-H曲線は磁化曲線とは、かなり異なった磁界依存性を示していると考えられる。

5. まとめ

(Fe₁₋₅Co₅)₃Tb化合物および非晶質Fe₃Tbの磁歪特性を室温及び77Kで測定し以下の結果を得た。

1. (Fe₁₋₅Co₅)₃Tb化合物のλ₁₁は、室温で700〜900×10⁻⁶、77KではFe₃Tbで1500×10⁻⁶、Co₃Tbでは3000×10⁻⁶であり、Fe, Coの置換効果が著しい。
2. 非晶質Fe₃Tb合金のλ₁₁は室温では410×10⁻⁶、77Kでは960×10⁻⁶であり、結晶質の磁歪と比較し約30〜40%減少している。

文 献

1990年12月3日受理、1991年2月28日採録