Fe-B films sputtered in Ar+N₂ plasma were investigated in order to obtain high initial permeabilities. It was important to be developed for the relations between initial permeability μ₀ and film structure such as phase, grain size, and lattice strain. Fe-(1~4 at%) B films sputtered in Ar+N₂ plasma show high μ₀ about 2000 annealed at 400°C and about 1000 at 500°C. Results of X-ray and electron diffraction pattern indicate that the films with high μ₀ consists of a phase. By comparing this with the results for Fe-N films, it is suggested that high μ₀ in Fe-B-N films is caused by the reduction of grain size and induced lattice deformation as well as other metallographic structure such as the homogeneities.

Key words: Fe-(0~4 at%) B-N thin films, soft magnetic property, initial permeability, local anisotropy fluctuation, lattice strain, grain size

1. はじめに

筆者らは、大きな結晶磁気異方性および磁歪定数を有する Fe, Fe-C 薄膜を始めとする各種スパッタ薄膜を Ar + N₂ プラズマ中に作製し、これらの薄膜に適当な熟処理を施すことにより、高い初透磁率が得られることを報告している。この高い初透磁率の出現は、主に N₂ フラスの添加に伴う結晶粒の微細化と、格子歪みに起因した膜中の各結晶粒の磁気異方性の変化に深く結びついていることをすでに明らかにしている1-4.

今回は、N および C と同様に Fe 格子間に入射型に固溶することにより Fe 格子の格子歪を誘導させるとともに微細構造の変化が予想される B に着目して、Fe-B 薄膜を、純 Ar および Ar+N₂ プラズマ中で作製し、その軟磁気特性と膜構造との関係について明らかにするために、局所異方性分散の解析を通して Fe-N 薄膜の結果と比較しながら検討を行ったので報告する。

2. 実験方法

試料は、d.c. マグネトロンスパッタ法により、全圧を6 mTorr とした、全ガス流量に対する窒素流量を 0~20% まで変化させて室温の並ガラス基板 (ω=73×10⁻⁷) 上に作製した。ターゲットの B 濃度は 0~4 at% まで変化させた。膜厚は3000Å 一定とした。熱処理温度は 200~500°C まで 100°C ずつ変化させた。

試料の飽和磁化および抗磁力は、VSM により測定した。初透磁率は、フェライトコアを用いたインダクタンス法により、試料の磁化方向と磁化方向の幅磁率の比振磁場依存性を測定し、零外挿することにより求めた。構造解析は X 線回折法および TEM 観察により行った。

TEM 観察には、べき関した岩塩上に SiO₂ 500Å 程度成膜後、その上に磁性膜を作製し、純水中で下地岩塩を溶解したものを試料として用いた。

3. 実験結果および考察

3.1 軟磁気特性および磁気異方性

1) 初透磁率の変化

Fig. 1 に、窒素流量比を 0~10% まで変化させて作製した Fe-1 at% B 薄膜を例に、磁化方向の初透磁率 μ₀ の熱処理温度依存性を示す。図中には比較のため、窒素流量比 10% で作製した Fe 薄膜（以下 Fe-N 薄膜と略）の結果1)を一点鎖線で示した。

窒素添加雰囲気中で作製した Fe-B 薄膜（以下 Fe-B-N 薄膜と略）の μ₀ は、成膜直後においても窒素流量比の増加とともに急激に増加し、5% 窒素流量比において 1000% 程度の比較的高い値を示す。10% までの窒素流量比で作製した薄膜の熱処理を施すことで、μ₀ は形成時の窒素流量比によらず 400°C で極大値を示している。特に 5% 窒素流量比で作製した薄膜の μ₀ は、2000 程度の高い値を示しており、500°C 熱処理後でも 1100 程度
Fig. 1 Change of initial permeability μ_i against annealing temperature for Fe–1 at%B–N films.

Fig. 2 Change of μ_i as a function of B concentration and $F_{\text{Fe}}/F_{\text{total}}$ for Fe–B–N films annealed at 400°C.

Fig. 3 Change of H_s and the structure constant S against annealing temperature for Fe–1 at%B–N films.

の値を有している。これは、Fe–N 薄膜におけるμ_iが、窒素流比によらず300°Cで急激な極大値を示す点と大きく異なっている。

Fig. 2 は、400°C熟処理後のμ_iを、B濃度および成膜時の窒素流比に対して整理した結果である。1～4 at%Bを添加した薄膜では、B濃度によらず、窒素流比の增加とともにμ_iは増加する。5%窒素流比程度で1000～2000程度の高い値を示す。しかし、窒素流比をさらに増加させるとμ_iは急激に減少する。

2）初磁率とH_sおよびSとの関係

まず、μ_iの熱処理に対する変化の原因を調べるため、異方性磁界H_sおよび異方性分散度を求めた。

Fig. 3 は、種々の窒素流比で作製したFe–1 at%B薄膜の異方性磁界H_s、ならびに局所異方性分散度を定量的に表す構造因子Sの熱処理温度依存性を示す。ここでH_sならびにSはHoffmannにより提唱された動的

微分磁化率の計画より求めた。図中には比較のため、5%窒素流比で作製したFe–N薄膜の結果も示した。

H_sは、成膜時の窒素流比の違いにより、熱処理温度依存性がかなり異なっている。しかし、いずれの薄膜でも、熱処理温度に対するH_sとμ_iの変化は一致していない。これに対し、Sは、成膜時の窒素流比によらず熱処理温度の上昇に伴い単調に減少し、400°Cの熱処理温度で極小値を示す。これは、Fe–N薄膜のSが、成膜時の窒素流比によらず300°Cで極小値をとることと異なっている。特に、5%窒素流比で作製したFe–B–N薄膜のSは、いずれの熱処理温度でも他の薄膜に比較して小さな値である。

次に、構造因子Sとμ_iの関係をFig. 4に示す。図中には、比較のためFe–N薄膜の結果も示した。Fe–B–N薄膜のμ_iは、Fe–N薄膜と同様ほぼ$1/S^2$に比例する。こ
Fig. 4 μ₀ as a function of S in Fe-B-N films.

Fig. 5 Change of Mₛ against annealing temperature for Fe-I at%B-N films.

回折強度の強いα-Feの(110)面の回折線のみ観測される。成膜直後の薄膜では、Fig. 7(a)に示す電子線回折パターンからα-Feの回折パターンのみ観測されており、ただし、試料作製時に生じたと思われる酸化鉄の回折線も検出されている。また、500°Cの熱処理後において、α-FeとともにFe₂Bの回折線が観測された。このことは、500°Cの熱処理後でMₛがわずかに低下する実験結果と対応している。

一方、10%から20%窒素流量比で作製した薄膜では、α-Fe(110)の回折線とともに、γ-Fe₃Nの回折線が、それぞれ、400°Cおよび300°C以下の熱処理温度においてわずかに観測される。また、20%窒素流量比で作製した薄膜では、200°C以上の熱処理温度で非磁性相であるBNの回折線も観測されている。

これに対して、1~5%の窒素流量比で作製した薄膜では、500°Cまでの熱処理温度範囲でα-Feの(110)面の回折線のみ観測され、生成相ならびに結晶粒配向の変化観測されない。Fig. 7(b)に5%窒素流量比で作製した薄膜を例に示すように、TEMによる回折像からもα-Fe以外の生成は確認されなかった。また、純Ar中で作製した薄膜において500°Cの熱処理後観測されたFe₂Bは、窒素を添加することで500°Cの熱処理後には観測されていない。

このようなγ-Fe₃N, Fe₂BならびにBNが生成される窒素流量比および熱処理温度は、X線回折の結果から4at%窒素流量比まで同様の傾向であった。また、B濃度を変化させても、α-Feの回折線強度に対するこれらの生成物の回折線の強度比は同程度であった。

次に、γ-Fe₃Nの生成に着目してFe-N, Fe-B-N, Fe-
C-N 薄膜で比較検討した。Fe-N 薄膜では、5% 程度の比較的低濃度の窒素流量比で作製した薄膜でも、400℃の熱処理後においてγ'-Fe₄N の回折線が観測される結果1)と比較すると、Fe-B-N 薄膜では B の添加により Fe の窒化物の生成が抑制されていることがわかる。このこととは、B 原子は N 原子との親和性が高く BN を生成しやすいためであると推察される。また、これは、窒素添加雰囲気中で作製した Fe-C 薄膜では、C の添加により、Fe の窒化物の生成が促進される点2)と大きく異なる。

ここで、Fig. 6 と比較すると、20% の窒素流量比で作製した膜の急激な Mₛ の低下は、主に、非磁性相である BN の膜中への析出、および Fe の窒化物の生成によるものであると推察される。一方、4 at%までの中濃度の変化に対する Mₛ の変化はほとんど認められず、また、X 線回折より得られた結果からも、α-Fe の回折線強度に対する BN などの回折線の強度比に、B 濃度の変化に伴う違いはみられなかった。これらの結果より、B 濃度の違いによる BN などの生成率の違いはほとんどないと推察される。

また、成膜直後において、窒素流量比の増加に伴い、Mₛ は低濃度の窒素流量比から徐々に低下しており、また、いずれの試料も熱処理に伴う Mₛ の変化はほとんど観測されていない。したがって、低濃度窒素流量比で作製した薄膜においても、成膜直後においてすでに、α-Fe 以外の BN などの相が微細に粒界などに生成していることが推察される。しかし、上述したように TEM による回折像からも α-Fe 以外の相は観測されていない。また、Fig. 2 と比較すると、高い Mₛ が得られる領域は、上述の α-Fe(110) の回折線のみ観測される領域であり、γ'-Fe₄N および BN の生成される領域では Mₛ は急激に低下している。

したがって、Fe-B-N 薄膜において高い Mₛ の出現を担う相は α-Fe であり、微細な BN などの相を含んだ微細組織の変化を通じて高い Mₛ が出現していることが推察される。

3) 結晶粒径および格子歪

Fig. 8 に、X 線回折の結果から求めた (110) 面間隔のパルク Fe の値からの変率の変化を熱処理温度に対し示す。試料は窒素流量比を 0〜10% まで変化させて作製した Fe-2 at% B 薄膜である。図中一点錐線は、Fe-B 薄膜と同様に各結晶粒の (110) 面が膜面に配向している 10% 窒素流量比で作製した Fe-N 薄膜の結果である。いずれの薄膜でも、成膜直後の (110) 面間隔の変率 Δd/d は 0.2〜0.9% 程度である。純 Ar 中で作製した Fe-B 薄膜の Δd/d の値は、Fe-N 薄膜と同様に、熱処理温度の上昇に伴い単調に減少している。しかし、500℃の熱処理段では、パルク Fe の値よりも小さくなってしまい、これは、Fig. 6 に示すように Fe₂B の析出に伴い α-Fe に圧縮歪みが誘導されるためであると推察される。

これに対し、2〜10% 窒素流量比で作製した Fe-B-N 薄膜の Δd/d は、200℃まででは熱処理によりわずかに減少した後、300℃での熱処理温度で極大値を示す。さらに、熱処理温度を増加させると Δd/d は急激に減少する。5%以上以上の窒素流量比で作製した薄膜の (110) 面間隔の値は、500℃の熱処理後においてもパルクの Fe の値よりも大きい。これは、Fe-N 薄膜の Δd/d が成膜時の窒素流量比によらず 400℃の熱処理温度でパルクの値に一致している点1)と異なる。

ここで、Fe-B-N 薄膜の 300℃までの熱処理温度範囲での (110) 面間隔の変数な変化は、熱処理下による格子緩
Fig. 8 Change of $\Delta d_{\text{ture}}/d_{\text{true}}$ against annealing temperature for Fe–2 at%B–N films.

Fig. 9 Change of grain size against annealing temperature for Fe–2 at%B–N films.

3.3 微細構造と初磁率との関係
以上の結果を基に、薄膜の微細構造と局所異方性分散量および初磁率との相関関係について検討を行った。

Fig. 9 に示したX線回折の(110)面からの回折線の半価幅より求めた結晶粒径の熱処理温度依存性を示す。ここで窒素流量を0～10%まで変化させて作製したFe–2 at%B 薄膜における生成相がα-Fe 単相であると仮定している。図中には比較のため、10% 窒素流量を0で作製したFe–N 薄膜の結晶粒径の結果も示した。

成膜直後のα-Fe(110)面からの回折線は、いずれの窒素流量比においてもFe–N 薄膜に比較して回折強度が強く急峻な回折線が得られており、結晶粒径に換算するとFe–N 薄膜よりも1.5 倍程度大きな150～200Å程度の値である。2% までの中等度窒素流量比で作製した薄膜の結晶粒径は、500℃で急激に増加している。これに対し、5% 以上の窒素流量比で作製した薄膜の結晶粒径は、500℃熱処理後においても200Å程度の値を保持している。このことは、上述のように、粒界などで析出していると考えられるBN の生成に深く関与しているものと考えられる。このようなFe–B 薄膜における変化は、Fe–N 薄膜の結晶粒径が熱処理温度に対して単調に増加し、400℃熱処理後ですでに250～300Å程度の大きな値を示す点と比較して大きく異なる。

日本応用磁気学会誌 Vol. 15, No. 2, 1991
定性的に良く一致する。そこで、Fe-N 薄膜における \(\mu_i \) と、格子歪ならびに結晶粒径との相関関係について検討を行った。

0〜10\% の窒素流量比で作製した Fe-B 薄膜における \(\mu_i \) の値を、(110) 面面間隔の歪率、および (110) 面の回折線の半径から算出により求めた結果を Fig. 10 に示す。黑色は 1000 以上、斜線は 500 以上、塗りつぶしの \(\mu_i \) に対応する。また、図中に示す実験条件で作製した結晶粒径および面面間隔の歪率を図中に示す。これより、微細な構造変化が初透磁率の変化に対し大きく寄与していると推測される。今後、Fe-B-N 薄膜の微細な組織変化に対して詳細に検討する必要がある。

まとめ

1) 4 at\%B の濃度での Fe-B-N 薄膜では、5\% の窒素流量比で作製した薄膜において、2000 程度の高い初透磁率が得られる。特に、5\% 程度の窒素流量比で作製した薄膜では、成膜直後でも 1000 程度、500°C 焼処理後においても 1100 程度の初透磁率が得られる。

2) 局所異方性分布の解析から、\(\alpha \)-Fe の結晶粒の格子歪ならびに結晶粒径の変化の他に、微細な構造変化が、高い初透磁率の出現に強い影響を及ぼしていることが推察される。

文献

1) 高橋 研、他、日本応用磁気学会誌, 14, 283 (1990).
2) 高橋 研、他、日本応用磁気学会誌, 14, 297 (1990).
7) 高橋 研、他、日本応用磁気学会誌, 14, 301 (1990).
8) 1990 年 12 月 4 日受理、1991 年 2 月 28 日採用