日本応用磁気学会誌 21, 685–688 (1997)

過負荷保護・周波数補償された電流帰還型磁気マルチ
Overload-Protected Frequency-Compensated Current-Fed Multivibrator

甲木昭彦・大内山真樹・松島雅寛
九州工業大学情報工学科 福岡県福岡市東区北区 680-4-1 (M-820)
A. Katsuki, M. Ouchi, and N. Matsushima
Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology,
680-4 Kawazu, Itoshima-shi, Fukuoka 820

Current-feedback magnetic multivibrators are widely used as power sources for electronic equipment, because they are highly efficient and reliable. However, these circuits have no ability to protect themselves from overloading, and the oscillation frequency changes according to the load current. In this paper, we propose a new current-feedback multivibrator with overload protection and frequency compensation. In addition, the condition for cessation of oscillation and that for fixed frequency of oscillation are derived by analysis. These conditions can be determined independently of each other.

Key words: magnetic multivibrator, current feedback, overload protection, frequency compensation

1. まえがき

Royer回路1), Jensen回路2), およびWison-Moore回路3)に代表されるプッシュプル制御型の磁気マルチバイブレータ（以下, 磁気マルチと略す）は, 電力供給能力を有する方形波出力の発振回路である。回路動作が磁気の収束状態に支配されかつ電子通型の半導体スイッチを用いたため, 競合による誤動作の危険性が低く, しかも回路が簡単である。そのため, 数 kW 程度以下の電子機器用高信頼性電源回路として広く使われている。

半導体の Royer回路は, DC→DCコンバータの発振回路として用いるほか, 周波数変換が電圧変換に比例することから測定用变换器としても用いられる。しかしこの際の電流波形にはスパイクを生じるため変動が高くなることの問題がある。これに対して, 出力に特異な変換器を持つ Jense回路は, ベース駆動用変換器磁芯の飽和に伴うベースの減少や変動するので, 電流スパイクを除去できる。Jensen回路の発振周波数は, pn接合電圧を利用して Royer回路と比べるとと電子電圧の影響を受けるにくく、ベース・エミッタ間電圧がコアク電流に依存するため負荷電圧の影響を受けにくい。

Royer回路およびJensen回路は, ベース駆動型電圧周波数によって行われるため, 過負荷時には発振停止し回路を保護する機能を有する。しかし, 軽負荷時にはトランジスタが駆動されキャリア積分時間が長くなるという欠点がある。

このような背景から, ベース電流とコアク電流との比を一定に保つ Wilson-Moore回路（電流帰還型磁気マルチ）が考案された。この回路は, 負荷が変化してもキャリア積分時間の影響をほとんど受ける有効率であり, 高周波動作にも適する。

Jensen回路と同様の理由により, この回路もコアク電流波形スパイクを生じない。しかし, 負荷電流に応じてベース電流が変動し発振周波数の変動に pn接合電圧を利用することにより, 負荷によっては発振周波数が数%程度も変動することがある。また, 電圧周波数の磁気マルチと異なり, 発振周波数は電源電圧に依存しないが, 過負荷保護機能を持たない。

磁気マルチに交流負荷を接続して使用の場合, 発振周波数は, それが変化すると例えば回転機のように負荷の動作に著しい影響を及ぼすことが多いので, 可能限り一定であることが好ましい。また, 磁気マルチを DC→DCコンバータに適用する際のように出力を整流して直流負荷を接続する場合は, 発振周波数の変動が少ないほど, 競合の周波数スパイクが低減されフィルタによる競合対策を必要としないなど回路設計が容易になる。

そこで筆者らは, 発振周波数が電源電圧に依存せず安定（変動率数%以内）となる補償回路付きの電流帰還型磁気マルチ4)を提案した。さらに, 過負荷に対する回路の保護は高信頼性電源に必須の機能であることから, 負荷時にのみ電圧周波数駆動を併用することで過負荷保護を可能にした電流帰還型磁気マルチ5)も提案した。

本論文では, これを基礎に過負荷保護機能を発振周波数補償機能と併せて持つ電流帰還型磁気マルチを提案する。機能は半導体の制御素子を用いずに磁気の手法のみで実現されていることから, 磁気マルチが元来持つ高耐食性を発揮することができる。Wilson-Moore回路は, トランジスタの駆動条件が理想的であるため半導体スイッチの信頼性が高いが, 過負荷保護能力を得ることで電源周波数としての信頼性がさらに高められ, 提案回路は, 低周波でも高周波でも動作可能であり交流負荷にも適用できるため, 発振周波数精度を特に厳密に求められる場合を除いて, 広範囲の用途に使うことができる。

2. 図類

Fig. 1に過負荷保護・発振周波数補償された電流帰還型磁気マルチの基本回路を示す。図面において, は電源電圧であり, および抵抗は始動回路を構成する。始動回路は, スイッチング用トランジスタおよびトランジスタのベース・エミッタ間接合特性などのわずかな差を利用して, 電源投入時にいずれかを導通させる。以後, および が交互に導通状態とスパイク状を繰り返し, 発振が連続される。SRは可変抵抗を有する電流帰還型変換器, T1は出力用線形変換器
図1 Overload-protected frequency-compensated current-feedback magnetic multivibrator.

電圧である。

図2 Circuit operations with light loading.

图3 Circuit operations with heavy loading.
で与えられる。したがって、次式が成り立つとき、\(t_0 \geq 0 \) となる。

\[
 t_1 > \frac{N_T N_z E_s}{N_T N_e R_F} \tag{4}
\]

5. 周波数補償の条件

軽負荷時および重負荷時を通じて、\(f \) が \(t_1 \) にも \(E_s \) にも関係しないための条件を考える。

①軽負荷時：\(f \) は、\(\phi_0 \) が時刻 \(\varepsilon \) によらないとすると、次式

\[
f = -\frac{e_b}{4N_b \phi_0} \tag{5}
\]

で与えられる。ここで、\(\phi_0 \) の SR は飽和磁束を表し、\(e_b = V_{DB} + V_{DF} + M_1 i_1 \) と \(M_1 \) を \(M_1 = \frac{N_T}{N_z} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{6}\)

となる。②軽負荷時の関係を満たすような \(R_C \) が存在するためには、

\[
 N_T > N_b \tag{7}
\]

という関係が成り立つ必要があることが分かる。

②重負荷時：\(e_b \) は

\[
e_b = V_{DB} + V_{DF} + M_2 i_1 \) と \(M_2 \) を \(M_2 = \frac{N_T}{N_z} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{8}\)

として、(8) 式の関係を満たすような \(R_C \) が存在するためには、

\[
 N_T > N_b \tag{9}
\]

という関係が成り立つ必要があることが分かる。

③軽負荷時：\(e_b \) は

\[
e_b = V_{DB} + V_{DF} + M_2 i_1 \) と \(M_2 \) を \(M_2 = \frac{N_T}{N_z} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{10}\)

で与えられる。ここで、

\[
 M_2 = \frac{N_T}{N_z} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{11}\)

となる。これより \(f \) が \(t_1 \) によらないと次式のように示される。

\[
 R_C + r_a = \frac{r_a + \left(\frac{N_c}{N_b} - \frac{N_b}{N_z} \right) \left(r_b + r_{BE} + r_{D} \right)}{N_b \left(N_b - N_c \right) \left(r_m + r_{D} \right)} \tag{12}\)

(5) 式で与えられる \(f \) が \(t_1 \) によらないと次式のように示される。

\[
 R_C + r_a = \frac{r_a + \left(\frac{N_c}{N_b} - \frac{N_b}{N_z} \right) \left(r_b + r_{BE} + r_{D} \right)}{N_b \left(N_b - N_c \right) \left(r_m + r_{D} \right)} \tag{13}\)

負荷状態が変わっても \(R_C \) を取り替えることはできないので、

\[
 R_C = \frac{N_T}{N_z} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{14}\)

この式を満たすように \(N_T \) を選ぶと、軽負荷時および重負荷時を通じて \(f \) が \(t_1 \) 依存しない。\(9 \) および \(14 \) 式から

\[
 N_T > N_b > N_e \tag{15}\)

となることが分かる（Fig. 1 の \(T_B \) および \(T_B \) を参照）。

ところで、(8) 式の \(\left(R_C + r_a \right) \) と \((14) \) 式の \(N_T / N_b \) を \((12) \) 式に代入すると、\(M_2 = 0 \) となる。したがって、重負荷時には、\(f \) が \(E_S \) に無関係となる。軽負荷時では \(f \) は \(N_T \) 依存するので、軽負荷時および重負荷時を通じて、\(f \) が \(E_S \) にも依存しない。

6. 発振停止条件

重負荷時の \(i_b \) は、次式

\[
i_b = \frac{N_c}{N_b} \left(\frac{r_m + \frac{N_c}{N_b} (r_b + r_{BE} + r_{D}) - \left(\frac{N_b}{N_z} \right)^2}{\left(\frac{N_b}{N_z} \right)^2} \right) \times \left(\frac{N_b}{N_z} - \frac{N_c}{N_b} \right) \left(r_m + r_{D} \right) \tag{16}\)

に示すように \(E_S \) の影響を受け、軽負荷時とは異なり \(i_b \) に比例しない。\(i_b \) がさらに増加して過負荷状態になるとき、(5) 式は発振を停止する。発振停止時の \(i_b \) すなわち最大負荷電流 \(i_{lb} \) は、\(i_{lb} = i_{lb} \) および \(i_{lb} (N_b / N_z) i_b \) である。次式で与えられる。

\[
i_{lb} = \frac{h_{RF} N_b E_s}{R_C i_b} \tag{17}\)

7. 実験結果

提案回路の動作を確認するため、SR にセンサーマックス磁芯（外径 80 mm、内径 45 mm、高さ 10 mm、テープ厚さ 0.025 mm）を用いて実験した。直流負荷の場合について、測定結果を示す。Fig. 4 は最大負荷電流 \(i_{lb} \) と \(R_C \) との関係（過負荷保護特性）である。次に、発振周波数補償特性について、\(f \) に対する特性を Fig. 5 に、\(f \) に対する特性を Fig. 6 に示す。いずれも Fig.

の特性ならびに過負荷保護および発振周波数補償を行わない（Fig. 1 から \(T_1, T_2, D_1 \) および \(R_F \) を取り除いた）場合

Fig. 4 Characteristics of overload protection.
の特性について調べた。なお、交流負荷時においても同様の特性を示すことを確認した。以上の結果から、過渡支流保護と発振周波数補償が可能であることが分かる。

Fig. 4～6の測定に際し、$R_c=5.6$Ωおよび$N_f=60$とした。これらは実験的に求めた限界と見なされる値である。これに対し(b)および(14)式から計算した値はそれぞれ$R_c=6.7$Ωおよび$N_f=75$であった。両者には若干のずれを生じた。トランジスタのパラメータの温度依存性も電流依存性などを考慮して解析することにより、正確な計算値を得ることができると考えられる。

実験および計算に用いた数値（測定値）は次のとおりである。

$N_1=N_2=N_3, N_p=N_0=N_F=100, N_c=N_F=N_0=10, N_s=50, N_b=150, V_{BE}=0.75$V, $V_{GT}=0.78$V, $r_{BE}=0.1$Ω, $r_{NB}=0.038$Ω, $r_{GT}=0.08$Ω, $r_s=0.067$Ω, $r_b=0.13$Ω, $r_k=0.26$Ω, $C=3440$μF.

8. すなわち

過渡負荷に対する保証機能と発振周波数を一定に保つ補償機能を併せ持つ電流検出型電磁スイッチを提案し、実験によって動作を確認した。また、周波数補償条件と発振停止条件を導出した。これらの条件に共通含まれるのは巻数比N_c/N_bだけであることに注意すれば、周波数補償条件と発振停止条件とを互いに独立に設定できる。SRなどの磁気特性と回路動作との関連性、ならびに発振周波数特性および最大負荷電流特性を含めたさらに正確な解析については稿を改めて報告したい。

文 献

付 録

解析の方法：実験を用いたSRの保磁力の測定値は1.5A/m,起磁力m.f.に換算すると0.26A/mである。m.f.のピーク値は、最も小さい場合(1.0Aのとき)で19Aであった。ヒステリシス特性は、ヒステリシス曲線の急曲がベルトデテールなどと比べると緩やかであるが、本回路ではかなり深い領域まで恒流されている。そこで、解析に当たっては、SRがFig. A1に示す理想的角形磁化特性を持つと仮定した。T_{D1}およびT_{D2}は理想変換器とする。次に、D_1およびT_{D1}の導通状態に対する等価回路をそれぞれFig. A2(a),(b)とする。ここで、V_{BD}およびV_{RE}は接点電圧である。r_{BE}はV_{BE}の電流依存性を、r_{BE}およびr_{BE}はそれぞれV_{BE}のR_s依存性、r_{i}依存性を表す。R_sには通常高抵抗が使われるため、Fig. 2およびFig. 3では、その値を無限大とし、r_{BE}を省略した。これら1のD_1およびT_{D1}をそれぞれFig. A2(a),(b)に置き換え回路方程式をたてると、軽負荷時または重負荷時の解析ができる。

![Fig. A1 Magnetization curve of SR.](image)

![Fig. A2 Equivalent circuits of D_1 and T_{D1}.](image)

1996年10月16日受理。1997年1月16日採録