Non-Destructive Testing Using a Rotational Magnetic Flux Sensor with a Differential Three-Axis Search Coil

M. Oka,* Y. Tsuchida, and *M. Enokizono

Department of Computer and Control Engineering, Oita National College of Technology, 1666 Maki, Oita, 870-0152
* Department of Electric and Electronics Engineering, Faculty of Engineering, Oita University, 700 Dannoharu, Oita, 870-1192

In order to detect a minor reverse-side crack on a thick steel plate, it is necessary to develop a magnetic sensor with high sensitivity and stability. We developed a new rotational magnetic flux sensor with a differential search coil which consists of two three-axis search coils. A new crack estimation parameter is also presented. The experimental results show that the sensor can clearly detect minor reverse-side cracks. The new parameter was obviously affected by the properties of cracks such as the existing surface, inclination angle, and depth.

Key words: rotational magnetic flux, NDT, reverse-side crack, differential search coil

1. はじめに

大型構造物に発生した外壁からの亀裂など目視では発見できない欠陥を微少な段階で発見することは重要である。従来、この目的のために、発電機検査法などが研究されてきたが、これに対して、筆者らは、新たに開発した欠陥に関する情報がベクトル的に得られる回転磁束型磁気センサを用いて厚鋼板裏側の微少な欠陥の検出を指針として研究を行っている。

Fig. 1 に新しい磁気センサの構造図を示す。磁気センサの寸法は、46 mm x 46 mm x 20 mm である。励磁コイルは、相対するコイルを 1 組とし直交するように配置し、0.4 mm 径のホルダ合金をそれぞれ 140 回回した。1 個の励磁コイルの寸法は、30 mm x 10 mm x 20 mm であり、積層けい素鋼板鉄心の寸法は、20 mm x 3 mm x 20 mm である。Fig. 2 に 3 軸サーチコイルの構造と低雑音アンプとの接続を示す。X および Y 軸のサーチコイルは、0.5 mm 厚の亜鉛板の巻枠に直交して配置し、0.04 mm 径のウレタン線をそれぞれ 500 回回した。さらに、X および Y 方向の巻枠には、アルゴンガスを（5 mm x 5 mm x 0.5 mm）を内蔵している。Z 軸のサーチコイルは、バンカーキー型のコイルで、0.04 mm 径のウレタン線を 300 回回した。2 個の 3 軸サーチコイルは、励磁コイルの中央上下に配置されている。

Fig. 1 Structure of the new magnetic sensor.
2．2 測定システム

Fig. 3 に測定装置のブロック図を示す。2 相信号発生器で90度の位相差を持った励磁電圧を発生する。この2相励磁電圧は、パラーシールで適当な大きさに増幅されたのち励磁コイルに印加される。回転軸は、この励磁電圧によって被検査材と比較検査材中に作られる。欠陥で乱された磁束は、3軸差動サーチャイコイルによって各方向成分毎に検出され、低雑音アンプでA/D変換に必要な大きさまで増幅される。A/D変換器を通してこの信号をコンピュータに取り込み、被検査材表面近傍と比較検査材表面近傍の各方向の磁束密度の差（D_r, D_p, D_d）を算出し、さらに、D_r, D_p, D_d の最大値である D_{max}, D_{max}, D_{max} を抽出する。また、その他の数値演算処理もすべて測定用プログラムの中で行っている。

3．実験結果

実験は、次の条件で行った。励磁周波数は、表皮効果を考慮し、5 Hz と 10 Hz を中心に用いた。励磁磁束密度は、欠陥のない部分においてX, Y, Z各方向とも最大0.1 Tになるように励磁した。この励磁磁束密度は、励磁磁束密度測定用コイル（0.1 mm 厚のホルマール紙5回巻き）で測定した。センサのリフトオフは、被検査材全体の0.12 mmであり比較検査材とは接していない。欠陥のない被検査材の場合、3軸差動サーチャイルの出力は、各軸とも0である必要がある。しかし、製作時の誤差や比較検査材の寸法の関係で完全には0にならない。そこで、低雑音アンプの増幅度を微調整し、各軸の出力をなるべく0に近く、かつ、お互いに等しくなるように調整した。測定は、被検査材の中央部の左右25 mmについて行った。さらに、1点の測定値は、励磁周波数の80周波数の平均とした。Fig. 4 に磁気センサの配置や被検査材の寸法、測定点の配置を示す。試料中央部裏側に、垂直に模擬欠陥が設けられている。模擬欠陥の幅は、0.4 mm で、深さは試料表面に1 mach ずつ変化させた（0, 0.1, 0.2, 0.3, 0.4 mm）。φ, は、欠陥の方向角である。

3．1 欠陥位置とセンサ出力

Fig. 5, 6, 7 に、欠陥と磁気センサのY軸を平行に保って（φ=0度）磁気センサを走査した場合の欠陥の深さとX, Y, Z 軸の出力の関係を示す。欠陥周波数は、5 Hz である。これらのデータは、各深さの欠陥の測定値の最小値を引き算し、変化分のみを表示している。Fig. 5 のX軸の出力は、いずれの深さの欠陥の場合でも欠陥付近で変化している。Fig. 6 より、Y 軸の出力の変化は、欠陥とセンサのY軸が平行なため大きく変化していない。Fig. 7 では、欠陥の左右で出力が大きく変化している。以上の結果から、この磁気センサは、X, Z 軸とも深さ1 mm の欠陥をはっきりと捉えることができ、高感度な磁気センサと言える。また、欠陥のない被検査材からの信号が非常に安定していることから高安定な磁気センサとも言える。

3．2 SN 比による比較

この新しく開発した3軸差動サーチャイル回転磁束型磁気センサの欠陥検出特性の向上を確認するために、SN 比を用いて空心励磁式3軸サーチャイル回転磁束型磁気センサを比較した。両者ともX 軸方向の欠陥検出信号を利用し、比較の条件を欠陥幅0.4 mm、磁気周波数10 Hz とした。励磁磁束密度は、両者の構造が異なるため同一ではなく、前

Fig. 2 Detailed view of the three-axis search coil and connection between search coils and low-noise amplifiers.

Fig. 3 Measurement system.

Fig. 4 Layout of the sensor and the specimen.
者のセンサが、0.01 T、後者は、0.1 T である。SN 比は、(1) 式で算出した。

\[\text{SNR} = 20 \log_{10} \left(\frac{D_x - N_x}{N_x} \right) \text{ dB} \] \hspace{1cm} (1)

ここでは、\(D_x \) は、欠陥検出信号の最大値あるいは最小値と雑音の平均値との差とし、雑音 \(N_x \) は、欠陥なしの検査材の信号の最大値と最小値の差とした。Fig. 8 に比較結果を示す。この磁気センサは、いずれの深さの欠陥においても SN 比が 2 倍以上向上している。特に、欠陥の深さ 1 mm の場合でも 6.7 dB の SN 比で欠陥を検出できており、微小欠陥検出能力が大幅に向上している。これは、サーチコイルの差動化や励磁電流の追加などの改良の成果である。

3.3 新しい欠陥評価指標による欠陥評価の可能性

\(\delta B_x, \delta B_y, \delta B_z \) は、大きさだけではなく位相も欠陥により変化する。そこで、\(\delta B_x, \delta B_y, \delta B_z \) を同時に使用した欠陥評価指標 \(r \) を定義し、欠陥の評価に利用できる可能性を調べた。\(r \) は、\(\delta B_x, \delta B_y, \delta B_z \) をベクトル信号と見なした場合の、励磁電流の 1 周期の位相の原点からの距離である。\(\delta B_x, \delta B_y, \delta B_z \) を (2) 式と仮定すると、\(\omega t=0 \) の時の \(r \) は、(3) 式で表される。

\[
\delta B_x = \delta B_x \max \sin(\omega t + \theta_x) \\
\delta B_y = \delta B_y \max \sin(\omega t + \theta_y) \\
\delta B_z = \delta B_z \max \sin(\omega t + \theta_z)
\]

\[
r = \sqrt{\left(\delta B_x \max \sin(\theta_x) \right)^2 + \left(\delta B_y \max \sin(\theta_y) \right)^2 + \left(\delta B_z \max \sin(\theta_z) \right)^2}
\] \hspace{1cm} (2)

ここで、\(\theta_x, \theta_y, \theta_z \) は、X 軸の励磁電流の位相を基準とした場合の位相差である。Fig. 9 から Fig. 11 に X 軸の励磁電流の位相と \(r \) およびセンサの位置の関係を示す。励磁周波数は 10 Hz である。Fig. 9 は、欠陥が裏側にある場合の \(r \) の変化である（欠陥の深さ 2 mm, \(\psi=0 \) 度）。また、Fig. 10 は、Fig. 9 と同じ条件下で欠陥が表側にある場合である。両者を比較すると \(r \) の変化は明らかに異なっており欠陥の存在面の区別が可能であることを示唆している。さらに、Fig. 11 は、欠陥が裏側にあり \(\psi=15 \) 度の場合である（欠陥の深さ 2 mm）。Fig. 9（\(\psi=0 \) 度）との比較でも \(r \) の変化は明らかに異なっており、欠陥の方向角推定の可能性を示している。Fig. 12 に \(r \) が最大値を示すセンサの位置と欠陥の深さ、欠陥の存在面の関係を示す。この図から欠陥が裏側に存在するとき \(r \) が最大値を示すセンサの位置はおおむね正の値をとる、表面に存在すると負の値を示している。また、Fig. 13 に \(r \) が最大値を示すセンサの位置と欠陥の方向角 \(\phi \) の関係を示す。Fig. 13 では、方向角が正の場合よりも負の場合が約 5 mm だけ \(r \) が最大値を示すセンサの位置が右側にシフトする傾向を示している。Fig. 12 では裏側欠陥深さ 1 mm の点、Fig. 13 では方向角 0 度と±90 度の点が大きく離れれている。これらの点は、測定条件が厳しく雑音の影響を受けたためである。

Fig. 5 Change of \(\delta B_{\max} \) vs. the sensor position.

Fig. 6 Change of \(\Delta B_{\max} \) vs. the sensor position.

Fig. 7 Change of \(\delta B_{\max} \) vs. the sensor position.

Fig. 8 Comparison with the new sensor and the previous sensor using SN ratio.
Fig. 9 Change of r (reverse side, depth = 2 mm, $\phi = 0$).

Fig. 10 Change of r (front side, depth = 2 mm, $\phi = 0$).

Fig. 11 Change of r (reverse side, depth = 2 mm, $\phi = -15$).

Fig. 12 Position of the maximum value of r vs. the existing surface and depth of a crack ($\phi = 0$).

Fig. 13 Position of the maximum value of r vs. the inclination angle of a crack (reverse side, depth = 2 mm).

以上の結果から、rやrが最小値を示すセンサの位置は、欠陥評価用パラメータとして使用できる可能性があることがわかった。

4. まとめ

我々は、新たな3軸差動サーチコイル回転磁束型磁気センサや欠陥評価指標rを提案し、次のことを見出しました。
(1) 本論文で提案する3軸差動サーチコイル回転磁束型磁気センサは、差動構造とすることによって鋼板内部の欠陥を高SN比かつ高感度に検出できた。
(2) 欠陥評価指標rやrが最小値を示すセンサの位置は、欠陥の深さや存在面、方向角ϕの評価に使用できる可能性がある。
今後、欠陥評価指標rをニューラルネットワークなどを組み合わせ、欠陥の自動推定法の開発に取り組みたいと考えている。

謝辞 本研究の一部は平成9,10年度文部省科学研究費補助金基盤研究(C)（No.09650500）の援助により行われた。

文献

3) 橋田正人, 長田恒一郎:日本応用磁気学会誌, 15, 2, 455-460 (1991)
5) 橋田正人, 橋総正人: 日本応用磁気学会誌, 21, 4-2, 633-636, (1997)