三次元心磁図計測に基づく心筋梗塞・心室性期外収縮患者の周波数分析

Frequency Analysis of Myocardial Infarction and Premature Ventricular Contraction Based on 3D MCG Measurement

*College of Science and Engineering, Tokyo Denki University, Hatoyama-cho, Hiki-gun, Saitama 350-0394
**Applied Superconductivity Research Laboratory, Tokyo Denki University, Musashikakuyama, Inazawa, Chiba 270-1382
***School of Medicine, Nihon University, 3-1 Kami-machi, Oyaguchi, Itabashi-ku, Tokyo 173-0032

(1998年10月14日受理, 1999年1月21日採録)

We carried out 3D vector measurement of magneto-cardiograms (MCGs) of normal subjects and subjects with myocardial infarction (MI) or premature ventricular contraction (PVC), using a 3D second-order gradiometer connected to 39-channel SQUIDs, which can detect the magnetic field components perpendicular to the chest wall (Bz) and tangential to the chest wall (Bx,By) simultaneously. We used principal component analysis in order to compare the frequency characteristics in the MCG waveforms of normal subjects. The results showed that the frequencies in the MCG waveforms of MI and PVC subjects were dominated by lower frequencies (less than 10 Hz) than in normal MCGs, and that the score proportion characteristic of Bx was different from those characteristic of Bz and By.

Key Words: 3D vector measurement, MCG waveform, principal component analysis, myocardial infarction, premature ventricular contraction.

1. はじめに

心磁図(MCG:magnetocardiogram)は心電図(ECG:electrocardiogram)に比べて磁場の影響が少なく所持情報提供するなどの利点がある。また突然死の成因となる心臓の不整脈を対象とした研究として、WPW症候群のMCG計測により、早期発症およびそのモデル解析による検討が報告されている。不整脈の中でも直接死に関するものの心室細動があり、心室細動発生の原因の一つに心筋梗塞がある。心筋梗塞急性期には、拡張期狭心症で電流が傷害部から非傷害部に流れ、心筋傷害部の誘導で記録したECGのST部は上昇することが知られている。MCG計測は非接触であるためECG計測で問題となる電極による分極現象を考慮する必要がある、ST部などの低周波成分の評価に適する。現在、これらの理由によりその臨床応用に対する成果が期待されている。しかし、MCGに関する解析は時間領域に関した報告が多く、周波数領域に注目した報告は極めて少ないのが現状である。

本研究の目的は、二次勾配型三次元磁界検出コイルを用い、心筋梗塞患者、不整脈(心室性期外収縮)患者および健常者のMCG計測を行い、三次元磁界計測における

Fig. 1 Coordinate system and locations of the measurement positions on a subject's chest.
3. 実験結果および検討

3.1 実験結果

Fig. 2 に健常者での ECG の Q 波オンセット後、10 ms（時相①）、25 ms（時相②）、40 ms（時相③）、70 ms（時相④）の時相における法線磁界成分 (Bz) および接線磁界成分 (Bx, By) の等磁界分布図を示す。Fig. 3 の Bz 成分において、白い部分は磁界的吸い込み、陰影部は磁界的誘出しを示し、Bx, By 成分において、Fig. 1 に示した磁極系に従い、白い部分は磁極のプラス方向の磁界、陰影部は磁極のマイナス方向の磁界を示す。また、両者とも白い部分と陰影部の境界はゼロラインを示している。

Fig. 2 の等磁界分布図を見ると、時相①において、Bz 成分では測定位置 D6 付近で境界として D4 に 23.4 pT, C6 に -11.3 pT の極値を持つような双極子型の分布が見られる。一方、Bx, By 成分では、信号源の直上で検出磁界が信号源の向きによって最大または最小となるベクトルの検出特性を考慮すると、Bx 成分では D5 の位置に極値（約 -10.0 pT）があり、下向き (Y の正方向) の信号源が想定できる。また、By 成分では C4 の位置で極値が最大 (約 6.8 pT) となっており、右向き (X の正方向) の信号源が予想される。時相②において、Bz 成分では D5 に 27.2 pT, B6 に -28.7 pT の極値を持つような双極子型の分布が見られる。一方、Bx 成分は B6 の位置で磁界が最大 (約 -12.1 pT) となっており、この位置に上向きの信号源が予想される。By 成分では C4 と D6 の位置で極値が最大 (約 19.2 pT) となっており、この位置に右向きの 2 個の信号源が予想される。時相③において、Bz 成分は E6 に 3.4 pT, C5 に -10.2 pT の極値を持つ分布が見られるのが時相①, ②のような双極子型分布とは異なる。一方、Bx 成分では C3 の位置で極値が最大 (約 4.5 pT), C5 の位置で最小 (約 -4.5 pT) となっており、C3 と C5 の位置にそれぞれ上向きと下向きに 2 個の信号源が予想される。By 成分では D6 の位置で磁界が最大 (約 5.4 pT) となっており、D6 の位置に右向きの信号源が予想される。時相④において、Bz 成分は B6 に 7.2 pT, D4 に -6.9 pT の極値を持つ分布が見られるが、時相③と同様に双極子型分布とは異なる分布を示している。Bx 成分では C3 と C6 の位置で極値が最大 (約 9.3 pT) となっており、C3 と C6 の位置に向かって 2 個の信号源が与えられ、予想される。By 成分では C5 の位置で極値が最大 (約 -7.5 pT) となっており、右向き (X の负方向) の信号源が C5 の位置に予想される。これらのことにより、三次元磁界を検出方法に用いて計測を行うことによって、法線磁界成分 (Bz) から推測が可能な信号源を、接線磁界成分を用いることにより推測できる可能性がある。すなわち、接線磁界成分の利用することにより、信号源の構築をより詳細に検討することができると考えられる。

3.2 主成分分析による検討

3.2.1 項の実験結果で示した特徴を持つ検出コイルで計測された心筋梗塞患者、心室性期外収縮患者および健常者における MCG の周波数分析を主成分分析法により検討する。各磁界成分 (Bz, Bx, By) の波形において解析周期1
秒（一心拍周期相当、時間領域における標本数：N=1024）でフーリエ変換を行い、各測定点（A1〜H6の48点）の周波数スペクトルデータ（周波数帯域：80 Hz）を変換とし、分散共分散行列（48行×48行）を計算し、固有値、固有ベクトルを求めた。さらにそれぞれの主成分における各周波数の寄与を求めた。

Fig. 3 に、主成分分析における第一主成分の結果を各磁界成分ごとに示す。Fig. 3(a)のBz成分を見ると、心筋梗塞患者、心室性期外収縮患者ともに健常者と比較して、低周波（10 Hz以下）の寄与が大きいことが分かる。Fig. 3(c)のBx成分を見ると、Bz成分と同様に、心筋梗塞患者、心室性期外収縮患者ともに健常者と比較して、低周波の寄与が大きいことが分かる。Fig. 3(b)のBy成分を見ると、Bx、Bz成分とは異なる結果となった。心筋梗塞患者、心室性期外収縮患者において低周波の優位性は見られず、健常者と比較して著しい差異が見られない結果となった。

次に、心筋梗塞患者、心室性期外収縮患者において磁界の方向成分により周波数分布が異なっていることに注目し、各被験者のBz成分に対するBx、By成分の周波数分布の相関係数を求めTable 1に示した。その際、相関係数は比較のため、心筋梗塞患者、心室性期外収縮患者において周波数分布に最大差異が表されている低周波領域（10 Hz以下）について求めた。Table 1を見ると、Bz成分については低周波領域における周波数分布の相関係数がBx成分とBz、By成分の間でいずれも0.93以上を示し、各磁界成分に類似性があることがわかる。それと比較して心筋梗塞患者については、Bz−By成分間で相関係数0.89であり類似性を認められるが、Bz−Bx成分間で相関係数−0.28と非常に小さく類似性が無い異なった分布を示していることがわかる。また、心室性期外収縮患者においても心筋梗塞患者と同様に、Bz−Bx成分間では相関係数0.51と類似性の低い分布を示していることがわかった。Bx成分に加えて、接線磁界成分（Bx, By）の周波数分布による主成分分析を用いたMCGの周波数解析において、心筋梗塞患者、心室性期外収縮患者は健常者と比較して低周波成分の寄与が大きいことが示された。この結果は、動物実験においても同様な傾向が得られている。しかしながら、心室性期外収縮患者の期外収縮波形とその前後の波形の周波数解析に注目した報告は少ないのが現状である。そこで心室性期外収縮患者における期外収縮波形とその前後の波形についてさらに検討を行った。

Fig. 4に特徴的な波形を示した測定点C3における心室性期外収縮患者のMCG波形（Bz）を示す。一例として期外収縮波形（PVC2）とその前後の波形（PVC1, 3）について主成分分析を用いた周波数解析を行った。Fig. 5に、主成分分析における第一主成分の結果を各磁界成分ごとに示す。Fig. 5を見ると、PVC2のBx、Bz成分をすべてにわたって低周波の優位性が見られた。次に、Fig. 5(a)のBz成分を見ると、PVC1, 3ともに心室性期外収縮患者における正常調調律波形（PVC（NSR）：期外収縮が発生していないう時相の波形）と非常に類似した（相関係数：0.98〜0.99）周波数分布を示していることがある（Table2）。Fig. 5(c)のBy成分を見ると、Bz成分と同様に、PVC1, 3ともにPVC（NSR）と非常に類似した（相関係数：0.98〜0.99）周波数分布を示していることがわかる。一方、Fig. 5(b)のBx成分を見ると、Bz、Bx成分は異なる結果（相関係数：0.72）が得られ、低周波（50 Hz以下）の寄与が大きくPVC2と同様な傾向が得られた。また、PVC3はBz、By成分と同様にPVC（NSR）と類似（相関係数：0.99）していた。これは心室性期外収縮の異所性刺激（心房由来の異所性早期興奮）12の前兆が磁界成分のうちBz成分（Y方向の信号）に表れていることを示唆していると考えられる。

Table 1 Correlation of the frequency distribution of the perpendicular components and tangential component for each subject.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>MI</th>
<th>PVC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bz-Bx</td>
<td>0.93</td>
<td>-0.28</td>
<td>0.51</td>
</tr>
<tr>
<td>Bz-By</td>
<td>0.95</td>
<td>0.89</td>
<td>0.98</td>
</tr>
</tbody>
</table>

MI: myocardial infarction
PVC: premature ventricular contraction
Fig. 4 Examples of MCG waveforms of a PVC patient obtained at position C3 (Bz component).

4. まとめ
二次勾配型三次元磁界検出コイルを用いて、心筋梗塞患者心室性期外収縮患者および健康者のMCG計測を行い、次元磁界計測における接続磁界成分の有用性を検討し、各磁界成分において主成分分析を用いた周波数解析を試みた。この結果、MCG波形の第一主成分分析を用いた周波数解析においては、健康者のBx、By、Bz成分間に有意差は見られなかったが、心筋梗塞患者心室性期外収縮患者においては、磁界成分間に大きな差異が見られた。また、心筋梗塞患者心室性期外収縮患者（PVC（NSR））のMCG波形は健康者と比較してBx、By成分において低周波成分が支配的であることが示唆された。さらに、心室性期外収縮患者の期外収縮波形（PVC2）において低周波成分が支配的である特徴的な周波数分布が得られ、期外収縮前波形（PVC1）のBx成分の周波数分布において期外収縮波形（PVC2）と同様に低周波成分が支配的であることが示唆され、心電図計測では困難な信号源の二次元的な局所情報を体表面磁界分布より検討できる二次元計測は、より詳細な心臓の電気現象の解析に有用であることを示しています。今後、各磁界成分における周波数分布の相違についてさらに生理学的検討を行い、三次元磁界計測の有用性を示すことが必要である。

Table 2 Correlation of the frequency distributions of PVC (NSR) and PVC 1,2,3 for premature ventricular contraction.

<table>
<thead>
<tr>
<th></th>
<th>Bz</th>
<th>Bx</th>
<th>By</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC(NSR)-PVC1</td>
<td>0.99</td>
<td>0.72</td>
<td>0.99</td>
</tr>
<tr>
<td>PVC(NSR)-PVC2</td>
<td>-0.08</td>
<td>0.51</td>
<td>-0.08</td>
</tr>
<tr>
<td>PVC(NSR)-PVC3</td>
<td>0.98</td>
<td>0.99</td>
<td>0.98</td>
</tr>
</tbody>
</table>

文献
5. 小林啓一郎, 内川義則：日本応用磁気学会誌, Vol. 20, No.2 673 (1996)
8. 河口哲男：「多変量解析入門Ⅰ」, 35, 森北出版 (1991)
10. 戸川compile: 「UNIXワークステーションによる科学技術計算ハンドブック」, 268, サイエンス社 (1992)
11. 市川義樹, 小林啓一郎, 内川義則, 佐藤一郎, 福井康裕, 河村剛史, 竹山秀夫; 医学電子と生体工学, 第35巻特別号 (第35回日本ME学会大会論文集), 285 (1996)

Fig. 5 Score proportion of principal component analysis for the first principal component.