CoNbZr薄膜を用いたGHz帯薄膜インダクタ

GHz-drive Magnetic Thin-film Inductor Using CoNbZr Film

馬場誠・末沢健吉・高橋祐一・茂泉孝・山口正洋・荒井賢一
菊地直喜・芳賀昭・島田寛・伊東健治

東北大学電気通信研究所、仙台市青葉区平 2-1-1（〒980-8577）
**東北大学電子工学部、連合都市中央 1-13-1（〒858-8577）
***三菱電機株式会社先端技術総合研究所、八戸市篠町1丁目 8-1-1（〒020-0001）

Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577

*Department of Electrical Engineering, Tohoku Gakuin University, 13-1 Chuo 1-chome, Tagajo 985-8537

** Research Institute of Scientific Measurements, Tohoku University, 2-1-1 Katahira, Aoba-ku Sendai 980-8577

***Mitsubishi Electric Corporation, 1-1 Tsukaguchi-Honmachi 6-chome, Amagasaki 661-0001

(1999年10月29日受理，2000年1月25日採録）

Thin-film inductors with micro-patterned CoNbZr films for impedance-matching elements in a 1-GHz-drive mobile communication handset systems have been demonstrated for the first time. Narrow slit trains along the easy axis direction and a square spiral coil control the ferromagnetic resonance frequency through changes in shape anisotropy energy and magnetostatic energy. Inductance increased by 18% compared with the air core inductor, while Q was almost the same.

Key words:
thin-film inductor, rf integrated circuits, CoNbZr film, micro-patterned, ferromagnetic resonance

1. はじめに

携帯機器用モノリシックマイクロ波集積回路（Monolithic microwave integrated circuit, MMIC）には、インピーダンスマッピング、信号処理、雑音除去などの目的で集積化インダクタが使用されている。しかし直流抵抗が大きく、またMajorのGaN基板上での占有面積が大きいことなどの問題がある。従ってスパイラルを最適化することによってこの問題を解決しようとする試みはいくつかあるが、小形化と低損失化を同時に達成することは容易ではない。

この問題に対し、我々は鈷様薄膜インダクタの有効性が高いと考え、1GHzで動作する0.37mm×0.37mmの大きさのインピーダンス変換素子を試作し、これまでに薄膜材料の開発、高周波波透帯域評価、試作プロセス、電磁界シミュレーション、高周波インピーダンス測定などについて報告してきた。

本論文では鈷様膜に施すスリットの効果について着目した。そのためGHz帯で用いることが可能なインダクタの目的であるにもかかわらず、鈷様膜に強磁化共鳴周波数が1GHz以下のCoNbZr薄膜を用いた。このGHz帯での使用が不適切な鈷様膜に3種類のスリットを施すことによりインダクタにおける高周波損失を抑え、Q値を空芯コイルと同等な値まで向上でき、スリットの効果を示すことができるので報告する。
Table 1 Dimensions of fabricated thin-film inductors

<table>
<thead>
<tr>
<th>Coil</th>
<th>Number of turns</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>11.0 μm</td>
<td></td>
</tr>
<tr>
<td>Spacing</td>
<td>11.0 μm</td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>2.6-3.0 μm</td>
<td></td>
</tr>
<tr>
<td>Area</td>
<td>337 x 337 μm²</td>
<td></td>
</tr>
<tr>
<td>Magnetic Thin film</td>
<td>Thickness</td>
<td>0.1 μm</td>
</tr>
<tr>
<td></td>
<td>Slit patterns</td>
<td>None, Parallel, Orthogonal, or Cross</td>
</tr>
<tr>
<td>Substrate</td>
<td>Thickness</td>
<td>600 μm</td>
</tr>
</tbody>
</table>

Fig. 2に作製したインダクタを示す。磁性膜にはCa$_3$Nb$_2$Zr$_2$を用いた。磁性膜の磁化密度は10 T、保持力は100 Oe以下、磁化定数は8 x 10$^{-9}$、抵抗率は120 μmΩcm、異方性磁化は10 Oeであり、磁性膜の大きさは380 μm x 380 μmである。スリット形状として磁性膜の磁化容易軸方向を長手方向として短冊状にスリットを設けたものを(parallel bar pattern)及び、中心を通りコイル辺に直交する方向に十字スリットを設けたものを(cross slit pattern)を作製した。また(parallel bar pattern)と orthogonal bar patternにおいて、短冊の幅wは11 μmとした。

3. マイクロパターン化磁性膜による
磁性膜周波数のシフト

本研究では、Ca$_3$Nb$_2$Zr$_2$アモルファス薄膜を用いた磁性薄膜インダクタを試作した。下記(1)式により計算される強磁性共鳴周波数f_{0}は1 GHzより低い。

$$ f_{0} = \frac{\gamma}{2\pi} \sqrt{\frac{M_{s} H_{k}}{\mu_{0}}} $$

ただし、γはジオス磁化率、M_{s}は飽和磁化、H_{k}は異方性磁化である。

このため、磁性薄膜をFig. 3のように磁化容易軸に平行な辺を長手方向とする短冊にマイクロパターン化し、磁化異方性エネルギーの増大によって強磁性共鳴波数を高周波域にシフトさせた。高周波域は短冊の幅方向に平行である。

ここでマイクロパターン化膜の実効的な磁界係数をN_{f}とすれば、異方性磁化はH_{k}に増大する。

$$ H_{k, eff} = H_{k} + N_{f} M_{s} $$

したがって磁化容易軸方向の磁化率μ_{eff}は

$$ \mu_{eff} = \mu_{0} (1 + N_{f} M_{s}) $$

これより強磁性共鳴周波数は

$$ f_{0, eff} = \frac{\gamma}{2\pi} \sqrt{\frac{M_{s} H_{k} + N_{f} M_{s}^{2}}{\mu_{0}}} $$

となる。

Fig. 4は膜厚0.2 μm、外形4 mm x 4 mmのCa$_3$Nb$_2$Zr$_2$薄膜について、電子ビーム露光とイオンエッチングによりマイクロパターン化膜を作製し、高周波通過を測定したものをある。短冊の一つの幅は20 μm-60 μm、長さは4 mmであり、短冊の間隔hは4.0 μm一定である。短冊幅の減少にともなって強磁性共鳴周波数は増大していることがわかる。実験、結果はLandau-Lifshitz方程式を用いて算出した理論値とよく一致している。これより、マイクロパターン化した磁性膜を用いれば、1 GHz前後の周波数帯域では強磁性共鳴による損失がインダクタの周波数特有に与える影響は小さいものと予想される。なお、Fig. 4(a)では透過率実際は300程度まで低下しているが、電極シミュレーションの結果によればこの値は応用上十分な値である。

4. 測定方法

本研究ではネットワークアナライザ(HP 8720D)にウェハブロープ(PicoProbe)を接続し、信号の反射係数S_{21}からインピーダンスを求め、(5)式に示したように実部をインダクタの抵抗とし、虚部を各周波数で除した値をインダクタと定義した。

$$ Z = R + j\omega L = Z_{0}(1 + j\omega L_{0}) $$

ただし、Z_{0}は角周波数であり、L_{0}は50 Ωである。

Fig. 5はウェハブロープの例である。ウェハブロープの先端に固定したサンプルの電極部分に接触し測定を行う。ウェハブロープの測定においてはブロープ先端が測定点でありOPEN、SHORT、LOADの校正を行う校正用モードを使用した。詳細は文献7)に記した通りである。

5. 実験結果

Fig. 6はスリットの種類を変えた場合のインダクタンスと抵抗及
Fig. 4 Frequency profile of complex permeability.

Fig. 5 Impedance measurement using a wafer probe.

Fig. 6 Frequency characteristics of slitted inductors as a function of slit patterns.
6. まとめ

帯域を制限する薄膜インダクタにおいて磁性膜のマイクロバターン化を行い、次のような結果を得た。

(1) 磁性薄膜を磁化容易軸に平行な線に長手方向とする短冊にマイクロバターン化し、形状磁気異方性エネルギーの増大によって磁性共鳴周波数を高周波側にシフトできた。

(2) 薄膜インダクタの磁性膜において3種類(parallel bar slit, orthogonal bar slit, cross slit)のスリットを導入することにより高周波損失を減少させることができた。ときに磁性膜を短冊状にマイクロバターン化したparallel bar pattern, orthogonal bar patternにおいては反磁界の影響により磁性共鳴周波数を高周波側にシフ