Ferroelectric and Magnetic Properties of (PLZT)\textsubscript{1-x}(BiFeO\textsubscript{3})\textsubscript{x} Solid Solutions

金井俊光・大越慎一・橋本和仁
東京大学 先端科学研究センター, 東京都目黒区駒場 4-6-1（〒153-8904）
T. Kanai, S. Ohkoshi, and K. Hashimoto
Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904

(PLZT)\textsubscript{1-x}(BiFeO\textsubscript{3})\textsubscript{x} solid solutions exhibiting both ferroelectricity and ferromagnetism were prepared by a solid-state reaction. X-ray diffraction patterns showed that the crystal structure of the solid solutions for \(x = 0.1\)–1.0 was a cubic pervoskite structure, but Raman spectra suggested the existence of a rhombohedral-type polar order. The temperature dependence of ferroelectricity indicates that the materials for the whole range of \(x\) are ferroelectric relaxors. The materials for \(x = 0.10\)–0.45 simultaneously showed ferroelectric and magnetic hysteresis loops at room temperature. The Néel temperatures of the materials decreased with increasing \(x\), e.g., 640 K (\(x = 0\)), 585 K (\(x = 0.10\)), and 570 K (\(x = 0.15\)). The possible origins of the weak spontaneous magnetization in the present system are also discussed.

Key words: ferroelectricity, ferromagnetism, BiFeO\textsubscript{3}, PLZT, pervoskite

1. はじめに

強誘電性と強磁性が共存する系では、両者の相互作用に基づく新規な機能性が期待できる。しかし、室温で両方の性質を備えた材料は天然にはほとんど存在せず、人工合成が試みられてきた。例えば、ペロプスカイト構造のBiFeO\textsubscript{3}反磁性体1,2,3に、BaTiO\textsubscript{3}およびPbTiO\textsubscript{3}強磁性体を固溶させた系では、室温で自発磁化が発現することが報告されている4,5。またスパッタ法およびソルゲル法を用いて、これらのアモルファス薄膜を作製することでさらに大きな自発磁化が発現することが藤井らにより報告されている6-8。

\[
\text{Ferro-electricity} \quad \text{Ferro-magnetism} \\
\text{SHG} \quad \text{MSHG} \\
\text{MO} \quad \text{ME}
\]

![Fig. 1 Phenomena caused by the interaction among magnetic, electric, and optical properties.](image)

我々は、強誘電・強磁性体の光学特性を着目した。例えば、強誘電・強磁性体では第2高調波（Second Harmonic Generation : SHG）を外部電場で制御できる磁化誘起第2高調波発生（Magnetization-induced Second Harmonic Generation : MSHG）9が期待される（Fig.1）。このようなMSHGの報告例は強磁性体表面での対称性の破れに依存した、反射モードに関する研究が中心であり、透過モードでの報告例は、Cu\textsubscript{2}O\textsubscript{3}10、スピネル構造成長させた(YbPr\textsubscript{3})(FeGa\textsubscript{3})O\textsubscript{12}薄膜11および、最近本研究室で見出された(Fe8Cr8I\textsubscript{13}+)(Cr8CN\textsubscript{7}H\textsubscript{5}O)薄膜12などのわずかか例に限られている。本研究では、反磁磁性体のBiFeO\textsubscript{3}と透明強誘電体の(Pb\textsubscript{3}La\textsubscript{13})(Zn\textsubscript{3}O\textsubscript{3})O\textsubscript{5} (PLZT(10/65/35),La:Zr:Ti=10:65:35)17-20の組み合わせを利用し、(PLZT)(BiFeO\textsubscript{3})\textsubscript{x}固溶体の作製を行ってきた。

Table 1 にはBiFeO\textsubscript{3}とPLZT(10/65/35)の特性を示す。

<table>
<thead>
<tr>
<th>Material</th>
<th>Structure</th>
<th>Dielectric Property</th>
<th>Magnetic Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiFeO\textsubscript{3}</td>
<td>rhombic pervoskite</td>
<td>Ferroelectric ((T_C = 1083) K)</td>
<td>Antiferromagnet ((T_N = 643) K)</td>
</tr>
<tr>
<td>PLZT(10/65/35)</td>
<td>cubic pervoskite</td>
<td>ferroelectric relaxor</td>
<td>diamagnet</td>
</tr>
</tbody>
</table>

Table. 1 Properties of BiFeO\textsubscript{3} and PLZT(10/65/35).
3. 結果と考察

3.1 構造

作製した(PLZT), (BiFeO₃), 固溶体の XRD パターンを Fig.3(a)に示す。全組成域で不純物のピークはみられず、ペロプスカイト単相であった。x = 0 の BiFeO₃は菱面晶ペロプスカイト構造を示した。x ≥ 0.1 では各ピークがブロードになり、巨視的には立方晶のペロプスカイト構造を形成した。格子定数を立方晶として算出すると、Fig.3(b)に示すようにxの増加とともに一緒に増加した(x = 0.1 のとき 4.00 A, x = 1.0 のとき 4.09 A)。

日本応用磁気学会誌 Vol. 26, No. 4, 2002

330
Fig. 4 Raman spectra of (PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$ solid solutions.

次に、ラマンスペクトル測定を行い、本固溶体の微細な構造を検討した。Fig.4には、(PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$固溶体のラマンスペクトルを示す。$x = 1.0$であるPLZT (10/65/35)では、250, 545, 750 cm$^{-1}$付近にブロードなピークが観測された。これらのピークは菱面体晶のTOモードに帰属される。250 cm$^{-1}$付近のピークはTO2とTO3が重なったもの、545 cm$^{-1}$付近のピークはTO4、750 cm$^{-1}$付近のピークはTO2+TO4におそれぞれ帰属できる。22, 23 x の減少とともに、750 cm$^{-1}$付近のピークが減少し、670 cm$^{-1}$付近に新たなピークが現われた。この670 cm$^{-1}$付近の新たなピークはPLZTにMn, Fe, Co, Cuなどの3d遷移金属をドープした系の報告24)にみられるピーク位置とは一致しており、-O−Fe−O−ネットワークの増大によると考えられる。以上のように、ラマンスペクトルから微視的には菱面体晶を形成していることがわかった。

3.2 強誘電特性

室温において(PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$固溶体の強誘電ヒステリシス測定を行った。Fig.5には印加電界50 kV/cmでの強誘電ヒステリシスループを示す。全組成域で強誘電ヒステリシスループを示したが、0.1 $\leq x \leq 0.6$ と 0.7 $\leq x \leq 1.0$ ではヒステリシスループの大きさに違いがみられた。例えば $x = 0.3, 0.5$ では、残留分極値はそれぞれ0.39 μC/cm2, 2.3 μC/cm2であるのに対し、$x = 0.7, 0.9$ では、残留分極値はそれぞれ9.6 μC/cm$^2, 4.3 μC/cm^2$と大きく、ヒステリシスループも大きく発達し、鰐性に近いループを示した。

Fig. 5 P-E hysteresis loops of (PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$ solid solutions.

次に強誘電性の転移温度を検討するため、誘電率の温度依存性を測定した(Fig. 6)。BiFeO$_3$は転移温度1083 Kの変位型強誘電体であることが知られている。25)−40 一方、PLZT (10/65/35)は緩和型強誘電体(クラクサー)24)であり、その誘電率は350 K付近にブロードなピークをもつ散乱相転移を示すことが知られている。17) (PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$固溶体ではFig.6(a)に示すように0.1 $\leq x \leq 1.0$において、誘電率は温度上昇とともに徐々に増加し、100 K以上でもなおブロードな散乱相転移を示した。また、誘電率のピーク温度は、$x = 0.2$で最大(672 K)となり、xの増加にともない減少してい(Fig.6(b))。

さらに、転移温度での電場応答を調べるために、誘電率の周波数依存性を測定した(Fig.7)。0.1 $\leq x \leq 0.6$では、周波数の増加に伴い誘電率が減少し、ピーク位置が低周波へシフトした。一方、0.7 $\leq x \leq 1.0$では、周波数の増加とともに誘電率は減少したが、ピーク温度は高温側にシフトした。

誘電率のブロードなピークと周波数変化にともなうシフトは、本固溶体(0.1 $\leq x \leq 1.0$)がクラクサーであることを示唆している。結晶構造が微細的には立方晶に帰属されるものの、微細的には菱面体晶であるという結果に基づくと、本固溶体の強誘電性は微視的な菱面体晶の領域、すなわち<111>方向に自発分極をもった偏極クラスターの寄与によると考えられる。実際、PLZTがクラクサーである理由は複数の金属イオンが存在することにより、偏極クラスターが温度下降とともに成長することで説明されている。26, 27 したがって、(PLZT)$_{x}$(BiFeO$_3$)$_{1-x}$固溶体では、プロックスケイプABO$_3$構造において、構成イオンのイオン半径の大きさから、Aサイトには
Fig. 6 (a) Temperature dependence of the dielectric constant for (PLZT)$_x$(BiFeO$_3$)$_{1-x}$ solid solutions at 1 MHz and (b) ferroelectric Curie temperature versus x plot.

Fig. 7 Temperature dependence of dielectric constant for (PLZT)$_x$(BiFeO$_3$)$_{1-x}$ solid solutions. (○: 10 kHz, ◦: 100 kHz, △: 1 MHz)

3.3 磁気特性

Fig.8 には、(PLZT)$_x$(BiFeO$_3$)$_{1-x}$ 固溶体の 300 K および 5 K での磁化の外部磁場依存性を示す。$x = 0$ では、300 K と 5 K で差はほとんどなかった。300 K において磁気ヒステリシスループを示した 0.10 ≤ x ≤ 0.45 では、5 K においてさらに大きなヒステリシスループを示した。また x ≥ 0.5 では、5 K においても明確なループを示さなかった。

Fig.9 には、(PLZT)$_x$(BiFeO$_3$)$_{1-x}$ 固溶体の 300 K での磁化曲線を示す。$x = 0$ では反強磁性体、$x = 1.0$ では反強磁性体特有の磁化曲線を示した。一方 0.10 ≤ x ≤ 0.45 では、磁化は低磁場領域では急激に増加し、高磁場領域では直線的に増加した。このような磁化曲線は、弱い自発磁化を発現していることを示唆している。自発磁化の大きさは、磁化曲線の高磁場領域で磁化が直線的に変化する部分を y 軸に外挿して算出できる。本固溶体の自発磁化は $x = 0.3$ で最も大きく、Fe イオン 1 個あたり 0.0089 μm であった。また x ≥ 0.5 では、磁化は磁場に対して直線的な変化をした。

Fig.10(a) に、(PLZT)$_x$(BiFeO$_3$)$_{1-x}$ 固溶体の外部磁場 5000 G での磁化率の温度依存性を示す。$x = 0$ では、300 K から温度上昇とともに磁化率は増加し、640 K で急激にピークを示した。これは、BiFeO$_3$ が $T_m = 643$ K の反強磁性体であるという文献値に一致している。$x = 0.1$ ではピークがブロードニングしながら低温側へシフトするの観察された。$x = 0.15$ および $x = 0.2$ では、ピークはさらにブロードになった。$x ≥ 0.3$ では、このようなピークは観測されなかった。
Fig. 8 Magnetization curves of (PLZT)$_x$(BiFeO$_3$)$_{1-x}$ solid solutions. (○: 300 K, ●: 5 K)

Fig. 9 Magnetization curves of (PLZT)$_x$(BiFeO$_3$)$_{1-x}$ solid solutions at 300 K.

Fig. 10 (a) Variation of the magnetic susceptibility with temperature for (PLZT)$_x$(BiFeO$_3$)$_{1-x}$ solid solutions under 5000 G. (■: $x = 0$, △: $x = 0.1$, □: $x = 0.15$, ▽: $x = 0.2$, ○: $x = 0.3$, ◇: $x = 0.5$, ▲: $x = 0.8$, ◆: $x = 1.0$)

Fig. 10(b) Variation of magnetization with temperature. (●: $x = 0.1$, ▲: $x = 0.15$)

ネール温度(T_N)を明確にするため、残留磁化で $x = 0.1$, 0.15 の試料の磁化温度依存性を測定した（Fig. 10(b)）。その結果、ピークが明確になり、$x = 0$ で $T_N = 640$ K, $x = 0.1$ で $T_N = 585$ K, $x = 0.15$ で $T_N = 570$ K と、低温側へシフトすることが確認できた。なお、$x = 0.2$ でははっきりしたピークはみられなかった。このネール温度の減少は、x の増加により、近接する Fe イオンの数が減少したことによると考え
3.4 強磁性の発現機構

(PLZT)(BiFeO₃)₃ 固溶体 (0.10 ≤ x ≤ 0.45) が脆弱自発磁化を示す機構としては、(i) 金属置換の選択性、(ii) キャンプ磁性、(iii) 塊造構みによるラマンスペクトラム配向、(iv) 反磁性磁性ドメインウォールのビンディングなどの可能性が挙げられる。(i) 金属置換の選択性：BiFeO₃ に PLZT が固溶する際、金属置換される位置に選択性がある場合、自発磁化発現の可能性がある。例えば BiFeO₃ の Fe³⁺イオンが G 型反磁性的スピン配列（第一近接のスピンがお互い反平行になっている配列）を成している場合について考える。PLZT の非磁性イオンが上向きスピンの Fe³⁺イオンを選択的に置換した場合は、下向きスピンの数が相対的に多くなり、自発磁化が発現する可能性がある。本固溶体で発現した磁化は最大で、x = 0.3 のにおいても 0.0089 μₜ であり、Fe³⁺がハイスピン状態した場合の約 0.2 %と小さい値である。本固溶体はイオン半径が異なる複数の金属イオンから構成されており、これらの金属イオンが完全にランダムに配置されることが分かっている。このとき、自発磁化発現の可能性がある。特に、本固溶体が BiFeO₃ ベースの (BaTiO₃)(BiFeO₃)₃ 固溶体においても、その磁化発現機構は BiFeO₃ が固溶することを生成する磁場構みによる、キャップ磁性が発現する可能性が考えられている。また、反磁性性である CoFe₂O₄ などは密度による磁化構造変化で磁化が誘起されることが報告されている。本系の x ≤ 0.3 では、観測された自発磁化の値からスピンの傾角を見積もると約 0.1° であり、このようにわずかなスピンの傾きにより、自発磁化が発現した可能性がある。特に、構造構みによるラマンスピン配向、アモールファス磁性 Fe 酸化物では、構造上の歪みにより自発磁化が発現する例が報告されている。例えば、ガラス化促進剤として P₂O₅ を加えて作製した CoFe₂O₄、NiFe₂O₄、Co₃Fe₄O₇ アモールファス体は、数 mmol/g の自発磁化が生じる。また、BiFeO₃-ZnFe₂O₄ アモールファス体は、室温で磁性を示す。さらに、スパノケ法およびソルゲル法を用いた BiFeO₃-BaTiO₃ 系、BiFeO₃-PbTiO₃ 系アモールファス薄膜においても強磁性が発現するという報告がある。このようなアモールファス磁性の強磁性に関しては、金吉により、理論的に解析され、その可能性が示されている。3）

4. まとめ

我々は、強磁性体の BiFeO₃ と強誘電体の PLZT を相反応で固溶させることにより、室温で強誘電ヒステリシスループを形成する複数相の作製に成功した。作製した固溶体は XRD 測定で立方晶に帰属されるが、ラマンスペクトラルにおいて面発体に帰属されるピークが観測されたことから、本固溶体は面発性の極性クラスター、強い誘電性が発現していると考えられる。また、相転移点付近における誘電率のプロードなピークと周波数分散がみられることから、本系はリラクゼーション誘電体であることが示唆された。0.10 ≤ x ≤ 0.45 では、室温において電気ヒステリシスループを示し、強磁性が確認できた。磁化率測定から、ネール点は x の増加とともに、640 K (x = 0)、585 K (x = 0.1)、570 K (x = 0.15) と減少した。一方、0.5 ≤ x ≤ 0.9 では、300 K 以上の磁化率がキャリアーイズループに従い、300 K 以上では常磁性状態であることが示唆された。本系において強い自発磁化が発現した機構としては、(i) 金属置換の選択性、(ii) キャップ磁性、(iii) 塊造構みによるラマンスピン配向、(iv) 反磁性磁性ドメインウォールのビンディングなどが考えられる。

2001年10月5日受理，2002年1月17日採録