Co$_2$MnGe ホイッサー合金薄膜の構造と磁気特性
Structural and Magnetic Properties of Co$_2$MnGe Heusler Alloy Films

岡村 進・手束展規・倉田佳一郎・杉本 諭・村上義弘*・斎藤今朝雄*・三谷誠司*・高梨憲毅*
東北大学大学院工学研究科材料学専攻

Department of Materials Science, Graduate School of Engineering, Tohoku University, 980-8578, Sendai, Japan
Institute for Materials Research, Tohoku University, 980-8577, Sendai, Japan

Co$_2$MnGe is a full-Heusler alloy with L2₁ structure, theoretically predicted to be a half-metallic ferromagnet. In this paper the structural and magnetic properties of Co$_2$MnGe films with a Cr buffer layer were investigated. The magnetization at 20 kOe of the prepared Co$_2$MnGe film was 750 emu/cm$^3$. The lattice parameter of the Co$_2$MnGe film annealed at 400°C was 5.704 Å, which was not in agreement with the value for a bulk sample (5.743 Å), but in nearly agreement with the value calculated from first principles (5.711 Å). The magnetization at 20 kOe was 976 emu/cm$^3$ which was in nearly agreed with the theoretical value (1002 emu/cm$^3$).

Key words: full-Heusler, half-metal ferromagnet, spin polarization, structure, magnetization, thin film

1. はじめに

L2₁, Cl₈の結晶構造をもつ3元系合金は、1903年Heuslerにより発見されて以来、注目を集めている合金である。1986年GrootらはNi₅Mo₅Sn₅, Pd₅Mo₅Sn₅などのhalf-Heusler合金が、一方のスピンバンドが全磁的であり、もう一方のスピンバンドが全磁的（あるいは半磁的）な電子構造をもつハーフメタルであると報告した。ハーフメタルはフェルミ準位において100%のスピン分極率をもち、その磁性構造は極めて興味深い。しかしながら、電子構造は組成や格子定数などに極めて敏感で作製は非常に困難であり、さらに高温では熱エネルギーによりギャップが小さくなってしまうため、室温においてハーフメタル薄膜の作製に成功した報告はまだない。

1990年Ishidaらはmuffin-tin potentialを用いたKorringa-Kohn-Rostoker(KKR)法により、L2₁のfull-Heusler構造を持つCo₃MnGeがハーフメタルであることを報告した。このホイッサー合金はキュリー温度が906K, 体積磁化が1002emu/cm$^3$と高い値をもつ。また、この磁化の値は一分子当り5.11μAであり、Mnの磁気モーメントは3.6μBである。さらに、minority spinのバンドギャップは0.210eVであり、室温での熱エネルギー0.025eVに比べて大きい。従って、この合金は室温においてハーフメタルになる可能性が高いと考えられる。実験として、AmboageらがCo₃MnGeでのmisfit1.5%のGaAs(100)基板上にMBEを用いてエピタキシャルCo₃MnGe薄膜の作製を報告した。本報では、格子定数のmisfitが0.3%と非常に小さ
Fig. 1 X-ray diffraction patterns of (a) Cr (100 Å)/CoMnGeY (200 Å) and (b) Cr (100 Å)/CoMnGeY (4000 Å) films. The broken lines show the (220) peak for the bulk sample.

えるためにチップの配置を変化させ、再びチップを同じ位置にしたときにはその膜は再現性良く作製できた。

Fig. 1(a)にCoMnGeY (200Å)，Fig. 1(b)にはCoMnGeY (4000Å)薄膜のX線回折パターンをそれぞれ示した。また、これからの結果から格子定数を測定したが、Fig. 2に示した。ターゲット上のチップ数を増加させるに従い、どちらの厚さの場合でもピーク位置が低角側にシフトし、格子定数が大きく増加しており、bulkの報告値よりずれていくことがわかる。この結果は、チップの数を増加させたことで原子レベルでの均一なスパッタが、Ge, Mnチップからの酸素を多く含むスパッタへと変化したことが原因であると推察される。また、4000Åの厚さのときにはピークがプロードになってしまい、結晶性が損なわれていると思われる。通常、膜厚の厚い方が結晶性が改良されると言われるが、本実験結果では薄膜になるにつれてバッファーレベルCrとのエピタキシー性が損なわれており、結晶性が低いため結果が原因であると思われる。

イオンビーム強度がターゲット中央部と外側面へ向かって減少することを考慮し、チップを置いたときのターゲット中央部から円周側面への距離と、そのときにとって製される薄膜の組成変化を測定しながら、MnとGeチップの枚数を配置してそれぞれ変化させ、Co:Mn:Geの組成比が主にホイスラー合金で磁性を担うMn原子を1として2.0:1:1.0の化学量論組成の薄膜を作製できるチップの配置を決定した。ここで、ターゲットに対するMn, Geチップの面積率はそれぞれ、10.2％、8.9％であった。得られた膜の格子定数5.791Åはパルクでの報告値（5.743Å）と比較し0.84％、第一原理計算により求められている理論値（5.711Å）と比較し1.40％大きい。

3.2 磁気測定

Fig. 3(a), (b)に膜厚200Å, 4000Åの薄膜(No.01, No.03, No.05, No.06)の磁化曲線を示す。両膜厚の薄膜で、Co濃度の減少とともに20 kOeにおける磁化の値が減少する傾向がある。しかし、200Åの場合にはCo:Mn:Geの組成比が2.0:1:1.0の化学量論組成で高い磁化750emu/cm³を得た。膜厚が厚いとき、磁化は比較的磁化が小さい値しか得られていないのは、結晶性が悪く、アモルファス相も存在するためであると考えられる。そこで、さらに結晶性を改善するために熱処理を行った。
3.3 熱処理による構造変化

Fig. 4 に熱処理温度を変えたときの CoO₃MnGe₁₀ (200 Å) の X 線回折パターンを示す。この結果では、2θ = 20° - 100° で CoO₃MnGe に相当するピークは 44° 付近だけである。また、図には示していないが、格子定数は熱処理温度の増加に伴い減少していく。400°C 以上で飽和する傾向にあり、第一原理計算による値、5.711 Å に近くなっていることがわかった。これは、ひずみの緩和が起こったために考えられる。一方、600°C の熱処理では MnO、Co の析出が確認され、これ以上の熱処理温度では別の相の析出が進行することがわかった。

3.4 磁化に伴う熱処理による変化

Fig. 5(a) に各熱処理温度での CoO₃MnGe₁₀ (200 Å) の磁化曲線を示す。また、Fig.5(b) に 20 kOe での磁化と保磁力を熱処理温度に対してプロットした図を示す。熱処理温度が低いときに磁化が飽和しにくいのは、磁化性的成膜と磁化性的成分が混在しているためと思われる。この磁化成膜の成分は熱処理温度の増加とともに減少し、600°C の熱処理ではその傾向がほとんど見られない。これは磁化の隠蔽を示すようなアモルファス相が存在し、熱処理により結晶化が進んだためであると考えられる。また、20 kOe の磁場をかけたときの磁化を評価した場合、400°C の熱処理においても、最も高磁化 970 emu/cm³ が確認され、保磁力も最も小さい値を示した。一方、この温度以上での熱処理では磁化が減少し、保磁力が増大している。これは、Fig. 4 に示した X 線回折パターンの結果から、MnO や Co の析出によるためであると考えられる。

Fig. 3 Magnetization curves at room temperature for Cr (100 Å)/ CoO₃MnGe₁₀ thin films with thicknesses of (a) 200 Å and (b) 4000 Å.

Fig. 4 X-ray diffraction patterns for Cr (100 Å)/ CoO₃MnGe₁₀ (200 Å) thin films at various annealing temperatures. The broken line and the dashed-and-dotted lines show the value of (220) peak calculated from first principles and for the bulk sample, respectively.

Fig. 5 (a) Magnetization curves at room temperature for Cr (100 Å)/ CoO₃MnGe₁₀ (200 Å) at various annealing temperatures for 2 hours. (b) Annealing temperature dependence of the magnetization at 20 kOe (●) and the coercive force (●).
Fig. 6 Lattice parameter dependence of (a) the magnetization at 20 kOe and (b) the coercive force for Cr (100 Å)/Co$_{0.8}$Mn$_{0.2}$Ge$_{1.0}$ film. The broken line and the dashed-and-dotted line show the value of the lattice constant calculated from first principles and for the bulk sample, respectively.

Fig. 6(a), (b)に20 kOeでの磁化率と磁化率を格子定数に対してプロットした図を示す。熟処理温度600℃以上での結果を除いて、計算で求められている格子定数に近く、20 kOeで磁化の値を増加する傾向が見られた。また、磁化率は格子定数ほど依存していないことがわかる。これは磁化率が主に不純物などの磁壁のピニングや、薄膜の表面構造に依存するためであると考えられる。600℃で熟処理した試料は、格子定数が計算より求められている値に近いにもかかわらず、20 kOeでの磁化は小さく、磁化力は大きくなっている。磁化の減少はFig.4に示したようにMnOおよびCoの析出によるものであり、磁化力が増大した原因はそれらに加えてFig.7に示したAFMによる表面微細構造の傾向のように、表面ラフネスが増大したためと考えられる。

一般に、ハッファーメタルの単結晶は格子定数に制御が依存するため、できるだけ理論值に近い格子定数と磁化を有する薄膜を作製することが望ましいと考えられる。そのためには、さらなる熟処理温度条件や最適基板温度、さらにはより精密な組成制御を探究する必要がある。併せて、電器等の研究を進めていく必要があると考える。

4. まとめ

Co$_{0.8}$Mn$_{0.2}$Ge ターゲット上にMn、Geのチップを配置し、その数と位置を変化させることにより、Co$_{0.8}$Mn$_{0.2}$Ge 薄膜をCrバッファーテレビに作製した。さらに、作製したCo$_{0.8}$Mn$_{0.2}$Ge 薄膜を熟処理し構造解析と磁化測定を行った結果、400℃の熟処理で格子定数が第一原理計算により得られた理論値に非常に近く、磁化の値も理論値に近い値が得られた。以上の結果より、Crをバッファーテレビとし、適切な熟処理を施すことで高結晶度Co$_{0.8}$Mn$_{0.2}$Ge の作製が可能であることが示唆された。

謝辞 本研究は科学技術振興機構（13505282）の助成を得て行われた。


2001年10月09日受理，2002年1月17日採録