A high-frequency carrier type thin-film magnetic field sensor was combined with a high-frequency carrier suppressing circuit to increase detection sensitivity. The carrier-suppressing circuit was designed and tuned to suppress the carrier, thus reducing the phase noise level of thermal noise (-174 dBm) at room temperature. The carrier was suppressed by about 60 dB, enabling detection of a very low signal from the sensor. As a result, high sensitivity of \(7.2 \times 10^{-6}\) A/m (9 \times 10^8 Oe) was demonstrated at 501 kHz.

Key words: high-frequency carrier type thin-film magnetic field sensor; carrier-suppressing; thermal noise; phase noise; high sensitivity

1. はじめに

磁性体に高周波キャリアを直接通電し、その表皮効果
によりインピーダンス変化を利用した
高感度な磁界センサは MI センサあるいは高周波キャリア
型磁界センサと呼ばれ、それらを薄膜で実現した上
で、さらなる高感度化 (9,12,13)や産業応用 (9,7,12)が盛んに研
究されている。このセンサ素子を用いた磁界検出の感度限
界は熱による磁化のゆらぎで決定される、その値は理論的に
は室温で 10^7 A/m と考えられる (5).

センサの高感度化においては、センサ素子自体の感度を
高めるとともに、微小信号検出回路の開発も重要な課題で
ある。これまでに筆者らは、高周波キャリア型薄膜磁界セ
ンサを用いた交流磁界の検出回路として従来波抑制回路を
提案し、従来波の位相雑音を低減させることで、7.0 \times 10^5
A/m (8.8 \times 10^7 Oe) の磁界を検出したことを報告した (9).

本稿では、位相雑音をさらに信号検出限界である雑音
まで低減できるように従来波抑制回路を設計し、その設計
に基づいて回路を構築した。その結果、従来波を 60 dB 減
衰でき、501 kHz の磁界信号に対して 7.2 \times 10^6 A/m (9 \times
10^8 Oe) の磁界感度を達成したので報告する。

2. 交流磁界検出と位相雑音

Fig. 1 は高周波キャリア型薄膜磁界センサを用いて交流
磁界を検出するための測定回路を示したものである。回路
は、発振器、センサ素子およびスペクトラムアナライザ
により構成される。発振器よりセンサ素子に搬送波信号を入
力する。センサに交流磁界が印加されると素子のインピー-
ダンスが変化するため搬送波は振幅変調 (AM) される。こ
の AM 信号をスペクトラムアナライザで測定すると Fig. 2
に示すように搬送波と側波帯のスペクトルが得られる。側
波帯のスペクトル強度は交流磁界の磁界強度に比例する。

Fig. 1 に示す測定回路を用いた場合、感度限界は搬送波
の位相雑音で決定される。位相雑音は、高周波振動器の信号
が時間的に揺らぐことに起因する雑音であり、搬送波の振
幅によってその大きさが決まる。よって、搬送波の振幅を
抑制できれば、位相雑音は低減しセンサを高感度にする。
Fig. 3 は用いる発振器(Agilent 8664A)とスペクトラ

![Fig. 1 Equivalent circuit.](image1)

![Fig. 2 Amplitude modulation spectrum.](image2)
ムアナライザ(Agilent 8563EC)を直列に接続して、位相雑音を測定した結果を示したものである。位相雑音は搬送波周波数のオフセットが大きくなるにつれて低減する。オフセット周波数が500 kHzのとき、位相雑音は-130 dBc/Hzである。

3. 搬送波抑制回路

3.1 動作原理

Fig. 4は搬送波抑制回路および各点における電力の推移を示したものである。回路は発振器、センサ素子、減衰器、移相器、低雑音増幅器およびスペクトラムアナライザにより構成されている。発振器から搬送波信号(P_s)を出力する。このとき搬送波に付随して位相雑音(P_m)が生じる。搬送波信号はディバイダによって図中A、Bに分配される。ディバイダは内部に抵抗体を有しておりジュール熱による電力損失が発生し、A、B側の信号は発振器出力に対してそれぞれ6 dB低下する。A側の信号はセンサ素子に通電され、交流磁界により振幅変調される。よって、磁界信号成分(P_s)が生じる。また、センサ素子は抵抗を有するので電力損失が発生する。一方、振幅変調された信号の搬送波成分と振幅が等しく、位相が180°異なるように減衰器および移相器を用いてB側の信号を調節する。これら2つの信号を合成すると搬送波成分が抑制され、それに伴い位相雑音も低減する。信号分配時と同様の理由により、信号合成時に際して磁界信号成分は6 dB低下する。

搬送波抑制による位相雑音が十分低減された場合、信号検出限界は次式に示す熱雑音(Pr(W))により決定される。

\[P_s = kTB \]

ここで、kはポルツマント定数、Tは絶対温度(K)、Bは帯域幅(Hz)である。帯域幅が1 Hzの場合、(1)式より室温(17℃)での熱雑音を求める。デシベル表示に換算するとPs = -174 dBmである。熱雑音は、スペクトラムアナライザの測定限界(−149 dBm)より約25 dB低いので、スペクトラムアナライザの前段に雑音増幅器(ゲインG)を用いる。

搬送波の抑制は、位相雑音が熱雑音以下になるように行えばよい。

3.2 搬送波抑制制

搬送波抑制前のセンサ出力の搬送波成分をP_s (dBm)、位相雑音をP_m (dBc/Hz)とする。搬送波の減衰量を搬送波抑制制S(dB)と定義すれば、要求される条件は次式となる。

\[S < 10 \log(P_s/0.001) - (P_s + P_m + 10 \log B) \]

交流磁界の周波数を501 kHzとし、帯域幅は1 Hzとする。P_sは-130 dBc/Hzであり、本稿においてP_sは2 dBm程度となるので、(2)式にこれらの値を代入して、S < −46 dBが得られる。すなわち、46 dB以上の搬送波抑制が必要となる。

Fig. 4のC点におけるAM信号の搬送波成分V_carを

\[V_{car} = V_c \sin \omega t \]

と表す。一方、D点における搬送波抑制用の信号V_supを

\[V_{sup} = mV_c \sin(\omega t + \pi + \Delta t) \]

Fig. 3 Offset frequency dependence of phase noise.

Fig. 4 Carrier-suppressing circuit and power diagram.
しながら，mはC点とD点での搬送波の振幅比を表す。$\Delta \theta$は位相差180°を基準にした両信号間の位相ずれである。このとき，スペクトラムアナライザに入力される信号の搬送波成分V_{out}は

$$V_{\text{out}} = V_0 + V_{\text{sup}}$$

である。(5)式をフーリエ変換し，搬送波成分のスペクトルの大きさV_{0}を求めると

$$V_{0} = V_{r} \sqrt{1 + m_{r}^2 - 2m_{r} \cos \Delta \theta_{r}}$$

となる。

搬送波抑制度は

$$S = 20 \log_{10} \left(\frac{V_{r}}{V_{0}} \right)$$

で表されるので，(6)，(7)式より

$$S = 10 \log_{10} \left(1 + m_{r}^2 - 2m_{r} \cos \Delta \theta_{r} \right)$$

となる。

搬送波抑制が理想であるとき$m_{r} = 1$，$\Delta \theta_{r} = 0$でV_{0}は0となる。しかし，実際の回路においては，m_{r}および$\Delta \theta_{r}$の値はそれぞれ減衰器，移相器の分解能に依存する。

Fig. 5 信号比依存性は搬送波抑制度を計算するためのものである。m_{r}に対する搬送波抑制度Sを(8)式より計算して示したものである。m_{r}は$m_{r} = 1$に対する比を0 DBに換算して示している。また，$\Delta \theta_{r}$をパラメータとした。

Fig. 6 Maximum power and bias field versus carrier frequency.

$S < - 46$ DBを実現させるためには，Fig. 5よりm_{r}は±0.05 DB以下，$\Delta \theta_{r}$は1°以下を満たす必要がある。

4. 実験結果

4.1 センサ素材

交流磁界の測定には，幅50μm，長さ5mmで，CoNbZr (0.5 μm)/Nb (5 nm)/CoNbZr (0.5 μm)のアモルファス磁性2層膜構造のセンサ素子を用いた。センサ素子に0 DBmの搬送波信号を入力し，501 kHz，磁界強度0.24 A/m (3×10⁻⁵ Oe)の交流磁界を印加した。交流バイアス磁界の大きさを変化させた。搬送波は100～700 MHzとした。

Fig. 6 は搬送波周波数に対するセンサ出力の最大値とそのときのバイアス磁界強度を示したものである。200～300 MHzのときにセンサ出力は−85 DBmで最大となった。バイアス磁界は400 A/m (6 Oe)程度であった。よって，搬送波抑制による微小交流磁界の計測は搬送波周波数を200 MHzで行った。

4.2 微小交流磁界計測

本稿では，46 DB以上の搬送波抑制を達成させるため搬送波抑制回路に0.1 DBの分解能を持つ減衰器を用いた。移相器は可変な変化するものを使用して0.1°以下の精度で調節できるようにした。低雑音増幅器はゲイン42 DB，NF 2.4 DBのものを使用した。発振器の出力は16 DBとし，搬送波周波数は200 MHzとした。微小交流磁界はソレノイドコイルにより印加し，周波数は501 kHzとした。ソレノイドコイルとセンサ素子は−60 DBの磁界シールドケース内に配置した。交流磁界測定時にはセンサ素子に390 A/m (4.9 Oe)の交流バイアス磁界を印加した。

Fig. 7 is a 501kHz，4.8×10⁻⁵ A/m (6×10⁻⁴ Oe)の交流磁界を印加した場合の搬送波抑制前後のスペクトル波形を示したものである。搬送波抑制回路を用いることで搬送波は60 DB減少した。Fig. 8 (a) は，搬送波抑制後に側面帯近傍の周波数スペクトルを帯域幅1 Hzで測定した結果である。ナイズラフは−130 DBm程度であった。Fig. 4の測定系を用いた場合，スペクトラムアナライザで測定される熱雑音は室温で−130 DBmと見積もり得ることから，観

日本応用磁学会誌 Vol. 26, No. 4, 2002
測されたノイズフロアは雑音の約1/10倍と考えられる。よって、信号と雑音の強度を考慮すると、特に、Fig. 8 (b)のスペクトルは0.1 dBの分解能を持つ測定器および低雑音発振器（ゲイン42 dB, NF = 2.4 dB）を用いて構成した。搬送波は60 dBのノイズ強度を考慮し、信号を検出できる下限を決定することができる。その結果、周波数501 kHz、磁界強度7.2 × 10-5 A/m (9 × 10-5 mT) の微小交流磁界の検出を可能にした。室温で動作可能な薄膜磁気センサおよび、世界で初めて10-5 A/m台の磁界感度を実現できた。

図 9は微小交流磁界の磁界強度に対するセンサ出力を示したものです。ノイズフロアに埋もれるまで、出力は磁界強度に比例した。

5. まとめ

雑音インピーダンスの信号検出が可能となるように搬送波抑制回路を設計した。回路は0.1 dBの分解能を持つ測定器および低雑音発振器（ゲイン42 dB, NF = 2.4 dB）を用いて構成した。搬送波は60 dBのノイズ強度を考慮し、信号を検出できる下限を決定することができる。その結果、周波数501 kHz、磁界強度7.2 × 10-5 A/m (9 × 10-5 mT) の微小交流磁界の検出を可能にした。室温で動作可能な薄膜磁気センサにおいて、世界で初めて10-5 A/m台の磁界感度を実現できた。

謝辞

本研究の一環として、医薬品副作用被害救済・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」。本研究の一環として、医薬品副作用被害救済・研究振興調査機構「医薬品副作用被害救済研究」・研究振興調査機構「医薬品副作用被害救済研究」。本研究の一環として、医薬品副作用被害救済・研究振興調査機構「医薬品副作用被害救済研究」。