Analysis of Perpendicular Magnetic Contact Duplication Using Metal Evaporated Tape

S. Okami, R. Ushigome, N. Sheeda, T. Komine, and R. Sugita
Dept. of Media and Telecomm. Eng., Ibaraki University, 4-12-1 Nakanarusawa-cho, Hitachi, Ibaraki 316-8511, Japan

The duplication characteristics of perpendicular magnetic media were analyzed by using metal evaporated (ME) tape as a slave medium. In the case of bit printing (BP), the best duplication characteristic was obtained at a duplication field of 4 kOe, about 2 times higher than the coercivity of the ME tape. On the other hand, in the case of edge printing (EP), duplication characteristics were saturated when the duplication field was more than 3 kOe. When the duplication field was strengthened, in the case of BP, the peak position shifted towards the outside of the magnetic layer of the master, whereas, in EP, the peak position shifted towards the center of the magnetic layer. The calculated MFM output waveform obtained by using computer simulation almost coincided with the experimental result, and the cause of the sub-peak could thus be explained. It was concluded that EP has better duplication characteristics than BP.

Key words: duplication field, perpendicular magnetic recording medium, servo signal, hard disk

1. はじめに

ハードディスクにサーボ信号を高速に形成する技術として磁気写真法が注目されている。また、近年のハードディスクの高記録密度化に伴って、垂直磁気記録が实用化され、磁気写真法の垂直記録媒体への展開が進められている。垂直磁気写真法にはビット転写（媒体面の垂直方向に転写磁場を印加）と、エッジ転写（媒体の面内方向に転写磁場を印加）がある。しかしこれまでの垂直磁気記録の実験による系統的検討は、ほとんど行われていない。そこで本研究では、斜め磁気異方性を有する蒸着テープ（MEテープ）の垂直成分を利用して、これら2種類の転写法に関して垂直磁気転写特性の実験的検討を行った。なお、本実験においては、転写磁場及び初期磁化によるための磁場の印加方向を工夫することにより、面内磁化の影響を除去した。

2. 実験方法及びシミュレーション方法

面記録密度が百数十 Gbit/inch²である現在のハードディスクの10倍相当の帯状プロファイルと位置を制限した垂直磁気転写実験を行った。また、本研究は位相サーボ方式を前提としており、位相制御部、及びAGC部を主転写部としている。位相サーボ方式における位相制御部やAGC部のビットの、トラック幅方向の長さは、トラックビッチに比べて大幅に長くなっているため、今回はトラック幅を無限大と考えた。

実験に用いたマスターテープは、Si基板上に膜厚1 μmのFeCo膜（Co 30 at.%, 飽和磁化 M₀ = 1900 emu/cm³, 磁化 H₀ = 70 Oe, 透過係数μ = 100）をストライプ状に形成したものであり、パターンの幅 = 3 μm, 隣接パターンの間隔 = 1.8 μm, パターンの長さ = 8 mm である。スレーブ媒体としては、DVC用MEテープ（飽和磁化 M₀ = 400 emu/cm³, 磁性膜厚 = 0.2 μm）を利用した。Fig. 1にMEテープの磁性層の構造を示す。MEテープの磁性層は斜め蒸着法により形成されるため、磁化容易軸がテープ長手方向に対して膜厚方向に約20°ほど立ち上がっている。この磁気特性における垂直磁化成分を利用し、垂直磁気転写の検討を行った。なお、MEテープには軟磁性裏打ち層（SUL）が存在しているが、磁気転写特性に及ぼすSULの影響は小さいため、SULを有する垂直磁気記録媒体に対しては、本検討で得られる結果はあまり変わらないと推定される。

転写されたMEテープは磁気力顕微鏡（MFM, PNI社製Nano R）により観察した。MFM探針はSiにCoが被膜されているNanoworld社製FMFM（Co膜厚 = 40 nm, 磁力 H₀ = 300 Oe）を使った。

Figs. 2, 3に、それぞれMEテープを用いたビット転写及びエッジ転写過程の概要を示す。ビット転写では、Fig. 2(a)に示すように、まずMEテープの膜面垂直方向に初期磁場 H₀を印加する。次に、Fig. 2(b)に示すように、マスターテープをそのストライプ方向がMEテープの長手方向と一致するようにしてMEテープに接触させ、初期磁場と反対の向きに転写磁場 H₀を印加する。

エッジ転写では、Fig. 3(a)に示すように、MEテープの幅方向に磁場 H₀を印加して、磁化の垂直成分を消磁状態にする。次に、Fig. 3(b)に示すように、マスターテープのストライプ方向がMEテープの長手方向に一致するようにして
ME テープに接触させ、転写磁場 \(H_t \) を \(H_0 \) と同じ向きに印加する。以上のような磁場印加方法により、ビット転写、エッジ転写ともに磁化の面内方向成分による磁荷は発生せず、垂直成分のみの検討が可能となる。

以上の実験に加え、シミュレーションによる解析も行った。シミュレーションにおけるマスター媒体、パターンの幅 = 3 \(\mu \)m、バターンの間隔 = 1.8 \(\mu \)m、パターンの長さ = 無限大、飽和磁化 \(M_s = 1900 \) emu/cm\(^3\)。保磁力 \(H_c = 0 \) Oe、透磁率 \(\mu = 100 \) とした。まず、転写磁場印加中のマスター媒体近傍の磁場分布を有限要素法により計算した。次に、この計算により求めた磁場分布と、実験に用いた ME テープのヒステリシス曲線から、転写された ME テープの磁化分布を推定した。Fig. 4 に実験で使用した ME テープの膜面に垂直方向（z 方向）及び、幅方向（x 方向）のヒステリシス曲線を示す。

ME テープの垂直方向及び幅方向の保磁力はそれぞれ 2.2 kOe 及び 0.5 kOe、また角度比はそれぞれ 0.42 及び 0.19 である。転写された ME テープの磁化分布からモーメント法により漏れ磁場を計算した。また、MFM 出力は、MFM 探針をモノポールとする探針の受ける力 \(F \) の z 方向微分 \(\partial F / \partial z \) を、\(H_t \)の z 方向成分 \(\partial H_t / \partial z \) に比例するので、\(\partial H_t / \partial z \)を MFM 出力とした。\(H_t \) は ME テープからの漏れ磁場の z 方向成分である。

3. 実験結果及び考察

Figs. 5, 6 にビット転写及びエッジ転写を行ったときの ME テープの MFM 像、及び MFM 出力を示す。ビット転写、エッジ転写における転写磁場は、それぞれ 4 kOe 及び 8 kOe である。前者はビット転写において、最も優れた転写特性が得られる転写磁場である。後者の値は、エッジ転写において転写特性が十分に飽和する転写磁場である。

Fig. 5 の MFM 像の明部は膜面に対して上向き、暗部は下向きの磁化状態を表しているため、同図からビット転写、エッジ転写のいずれにおいても、垂直磁気転写がなされていないことがわかる。

Fig. 6(a)に示されるように、ビット転写においてはマスター磁性層に磁束が集中することにより、マスター磁性層との接触部では磁場が強められて磁化が反転する。一方、非接触部では磁場が弱くなり、初期磁化が保存される。ビット転写では磁化状態が矩形となることが理想的であるが、Fig. 6(a)ではマスター磁性層接触部中央付近の MFM 出力が低下している。エッジ転写では、Fig. 6(b)に示されるように、マスター磁性層両側エッジに発生する転写磁場の垂直成分により、エッジ部に対しても上向き及び下向きに磁化されていることがわかる。また、マスター磁性層接触部ではサブピークが見られる。Fig. 6(a)のマスター磁性層接触部中央付近の MFM 出力の低下、及び Fig. 6(b)のサブピークに関しては、Fig. 7 のシミュレーション結果を用いて考察する。
Fig. 5 MFM images. (a) Bit printing duplicated with a duplication field of 4 kOe. (b) Edge printing duplicated with a field of 8 kOe.

Fig. 6 MFM output. (a) Bit printing duplicated with a field of 4 kOe. (b) Edge printing duplicated with a field of 8 kOe.

Fig. 7 に、転写されたME テープの磁化分布 M_L/M_S 及び MFM 出力 $\partial F/\partial x$ のシミュレーション結果を示す。Fig. 7(a) はビット転写で転写磁場を 4 kOe、Fig. 7(b) はエッジ転写で転写磁場を 8 kOe とした。M_L は磁化の垂直成分、M_S は ME テープの飽和磁化である。

Fig. 7(a) に示すように、ビット転写においては、マスターマグネットリ層中央付近にて MFM 出力の低下が磁化分布の低下の程度よりも大きいことがわかる。したがって、Fig. 6(a) の実験結果では磁気層中央付近の MFM 出力がほぼ 0 に低下しているが、Fig. 7(a) のシミュレーション結果から、マスターマグネットリ層中央付近の磁化の絶対値は Fig. 6(a) の値より大きいものと推測される。また、Fig. 7(b) から、エッジ転写においては、転写された磁化はメインピークのみを有するにも拘らず、MFM 出力ではサブピークが発生していることがわかる。このことから、Fig. 6(b) の実験結果に見られるサブピークは、MFM 出力が $\partial F/\partial x$ であるために生じたものであり、転写磁化状態においてサブピークは発生していないものと推定される。

転写磁場を変えてビット転写及びエッジ転写した場合の MFM 出力を Fig. 8 に示す。Fig. 8 から、転写磁場を変えても MFM 出力の概形は同じであることがある。このことから、ME テープを用いた垂直磁気転写の系統的な実験検討が可能であると考えられる。
MFM 出力の peak to peak 値 A (Fig. 6 中に図示)の
転写磁場依存性を Fig. 9 に示す。ビット転写においては、
転写磁場が弱い場合、マスター媒体との非接触部は初期磁
化の状態を保ったままであるが、マスター媒体との接触部
では磁化の一部が反転する。最適転写磁場では、マスター
媒体との非接触部は初期磁化に近い状態を保っていたが、マ
スター媒体と接触部で磁場が強くなるため磁化が大きく
反転する。また、転写磁場が強くなればほど、マスター
媒体との非接触部も磁場の影響を受け、初期磁化が反転す
るため、A が Fig. 9 (a) に示すようにビックを持つ。また、
ビット転写の場合、一般的に転写磁場はスレーブ媒体の保
磁力程度が最適値とされているが、本実験では ME テー
ブの垂直方向ヒステリシス曲線の傾斜が小さいため、保磁
力に対して飽和に必要な磁場が大きく、それに応じて最適
転写磁場が高くなり、4 kOe 程度になったと考えられる。な
お、Fig. 4(a) に示すヒステリシス曲線を有するスレーブ媒
体の場合、以下の式により最適転写磁場が 4 kOe 程度であ
るすることが見積もれる。

$$\Delta M = \int_{H_p}^{H} (dM/dH)dH$$

ここで、マスター媒体との接触部における磁場の最小値を
H_p、マスター媒体との非接触部における磁場の最大値を
H_s とした。H_p と H_s は、有限要素法によりシミュレーシ
ョンから計算した。また、dM/dH はヒステリシス曲線の傾
き、ΔM は H_s よりも H_p までの範囲のだ円積分値と
した。Fig. 10 に、このような計算により求めた ΔM の H_s
依存性を示す。Fig. 10 から、Fig. 4(a) に示すヒステリシ
ス曲線を有するスレーブ媒体の場合、最適転写磁場は 4
kOe 付近と推定される。一方、エッジ転写の場合は、マスタ
ー磁性層両側エッジに発生する転写磁場の垂直成分により
スレーブ媒体が磁化され、この磁化が転写磁場 3 kOe 程度
で飽和するため、Fig. 9(b) に示される A vs. H_s 曲線が得ら
れる。これらの結果は、これまで報告されている傾向と一
致している⑥。Fig. 9(a), (b) を比較すると、エッジ転写の方
がビット転写よりも A の値が大きくなくなっており、エッジ転
写の転写特性が優れていることがわかる。

Fig. 8 MFM output. (a) Bit printing duplicated with
fields of 2, 4, and 6 kOe. (b) Edge printing duplicated
with fields of 2, 4, 6, and 8 kOe.

Fig. 9 Duplication field H_s dependence of A in the
case of (a) bit printing and (b) edge printing.

Fig. 10 Duplication field H_s dependence of ΔM.
Fig. 11 Duplication field \(H_d \) dependence of \(L / L_0 \) in the case of (a) bit printing and (b) edge printing.

Fig. 11 に、ビット転写及びエッジ転写のビーク位置依存性を示す。\(L_0 \)をマスターマグネシウムのパターン幅、\(L \)をMFM出力のマスターマグネシウム接触部のビック間距離とした（\(L_0, L \)はFig. 6 中に図示）。ビット転写の場合、転写磁場の増加に伴い、ビーク位置がマスターマグネシウム外側に向かってシフトしている。この原因として、転写磁場の増加によりマスターマグネシウムの磁化が飽和するために、マスターマグネシウムの外側に広がったことが考えられる。一方、エッジ転写では、転写磁場の増加に伴い、ビーク位置がマスター磁性層中央に向かってシフトしている。この原因は、転写磁場の増加に伴い、マスターマグネシウムのエッジ付近から徐々に磁性膜内側に磁化が飽和していくことにあると推測される。

4. まとめ

スレープ媒体としてMEテープを用いて、垂直磁気転写の検討を行い、次のことことが明らかになった。
(1) ビット転写においては、転写磁場に最適値があり、保磁力の約2倍の4 kOe付近で最も優れた転写特性が得られ
た。一方、エッジ転写においては、転写磁場が3 kOe以上で転写特性が飽和することがあった。
(2) 転写磁場の増加に伴って、ビット転写ではビーク位置がマスター磁性層の外側に向かってシフトし、エッジ転写ではマスター磁性層中央に向かってシフトする傾向が見られた。
(3) シミュレーションを用いて計算したMFM出力波形は、実験とほぼ一致しており、サブピーク等の原因が説明できた。
(4) 今回の実験ではエッジ転写の方がビット転写より、転写特性が優れていると結論付けられた。
(5) MEテープの垂直磁化成分を用いて垂直磁気転写実験が可能であることが明らかになり、今後、更にMEテープを使った垂直磁気転写の系統的実験を進めることができると考えられる。
(6) 本研究で行った、実験による系統的垂直転写特性検討により、垂直ハードディスクへのサーボ信号転写は、ビット転写及びエッジ転写のいずれの方法によっても可能であることが示され、数十Gbit/inch²以上の記録密度も十分対応できることが期待される。

謝辞 マスター媒体是富士スチル（株）に作製して頂きました。また、本研究の一部は、NEDO産業技術研究助成事業及び日本学術振興会科学研究費補助金の支援により行われました。ここに謝意を表します。

References

2006年10月2日受理、2007年3月19日採録