Evaluation of Peak Skin Doses and Lens Doses during Interventional Neuroradiology Using a Direct Measurement System

Satoru Kawauchi,1,2,3 Koichi Chida,2 Takashi Moritake,4 Yusuke Hamada,1 Shogo Yoda,1 Hideyuki Sakuma,1 Wataro Tsuruta,5 and Yuji Matsumaru6

Objective: In interventional neuroradiology (INR), the evaluation of the peak skin dose (PSD) and lens dose is important because the patient radiation dose increases in cases in which the procedure is more difficult and complex. This study evaluated the radiation doses during INR procedures using a direct measurement system.

Methods: Radiation dose measurements during INR were performed in 332 patients with unruptured aneurysm (URAN), dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM). The PSD and bilateral lens doses were analyzed for each disease. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to the reference air kerma (K_{a,r}).

Results: In all cases, the PSD and right and left lens doses were 2.36 ± 1.28 Gy, 114.2 ± 54.6 mGy, and 189.8 ± 160.3 mGy, respectively. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN case. The Pearson correlation test revealed statistically significant positive correlations between K_{a,r} and PSD, K_{a,r} and right lens dose, and K_{a,r} and left lens dose.

Conclusion: The characteristics of radiation dose in INR were clarified. Owing to the concern of increased radiation doses exceeding the threshold values in DAVF and AVM cases, protection from radiation is required. Simple regression analysis revealed the possibility of precisely predicting PSD using K_{a,r}.

Keywords: interventional neuroradiology, peak skin dose, lens dose, radiophotoluminescent glass dosimeter, reference air kerma

Introduction

With advances in medical devices and materials, interventional neuroradiology (INR) is increasingly used in the treatment of various vascular diseases of the head and neck and cardiovascular lesions. However, INR procedures are often complex, increasing the fluoroscopy time and radiation dose for patients.1–8 Several radiation-induced skin injuries have been reported in cases of cerebral aneurysm, dural arteriovenous fistula (DAVF), and arteriovenous malformation (AVM).9–12 Therefore, it is important to evaluate the entrance skin dose through a series of INR procedures. Moreover, it is essential to evaluate the lens dose for each patient during INR, as it is one of the most radiosensitive tissues in the human body.13–17

Direct measurement of the patient’s skin dose with thermoluminescent dosimeters or radiophotoluminescent glass dosimeters (RPLDs) was performed during diagnostic
angiography and INR.\(^9,^{15,18-23}\) However, these studies did not estimate the peak skin dose (PSD) or the right and left lens doses in detail.

This study aimed to evaluate the radiation doses (PSD and bilateral lens doses) in INR procedures using a direct measurement system.

Materials and Methods

Study design and patients

This prospective study included consecutive 333 patients with unruptured aneurysm (URAN), DAVF, and AVM. The exclusion criteria were as follows: age less than 20 years (n = 0) and multiple INR procedures (n = 1). All participants provided informed consent, and the study protocol was approved by our institutional review board.

Angiogram technique

A biplane X-ray device (Allura Xper FD20/20; Philips Healthcare, Best, Netherlands) equipped with flat-panel detectors was used in this study. The lateral X-ray tube focal spot was located on the patient’s left side, while in a supine position. Fluoroscopy was performed in the pulse mode at a rate of 12.5 pulses per second, with a filter of 0.4 mm Cu + 1.0 mm Al. A DSA series was performed at two or three frames per second with a filter of 0.1 mm Cu + 1.0 mm Al filter. The exposure parameters, such as tube voltage and tube current, were controlled by an automatic brightness control system for the fluoroscopy and DSA modes.

Dosimetry technique

The PSD and the right and left lens doses of the patients were measured using small RPLD chips GD-302M (Chiyoda Technol, Tokyo, Japan) and a dosimetry cap made of thin stretchable polyester (RADIREC), as described in previous studies.\(^9,^{15,19-22}\) The RPLD chips were placed in 64 pockets sewn into a standard dosimetry cap, as shown in Fig. 1. The dosimetry technique and the method used for calculating the skin doses have been described in detail in previous studies.\(^{15,19,20}\) We assumed that the maximum value of all skin doses at the 64 dose-monitoring points was the PSD, and the radiation dose measured immediately above the eyeball was representative of the lens dose.

Data collection

Medical charts were retrospectively reviewed to collect patients’ demographic information and procedural details. The total fluoroscopy time (TFT) and reference air kerma \(K_{a,r}\), which refer to the cumulative dose to the patient and kerma area product \(P_{K,\alpha}\), were obtained from the report provided by the angiography machine.

Statistical analysis

The right and left lens doses in the 332 cases were compared using paired t-tests. The TFT, \(K_{a,r}\), \(P_{K,\alpha}\), PSD, and bilateral lens doses for each disease were compared using the Kruskal–Wallis test. Multiple comparisons were performed between each disease group using the Dunn’s test. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to \(K_{a,r}\).

Statistical analyses were performed using JMP Pro version 15.0.0 (JMP, Cary, NC, USA). A \(p\)-value of <0.05 was considered statistically significant.

Results

Table 1 summarizes the patient and angiographic characteristics (TFT, \(K_{a,r}\), \(P_{K,\alpha}\), PSD, and the right and left

Table 1 Summarizes the patient and angiographic characteristics (TFT, \(K_{a,r}\), \(P_{K,\alpha}\), PSD, and the right and left lens doses) in INR procedures using a direct measurement system.

\(^{9,15,18-23}\) These studies did not estimate the peak skin dose (PSD) or the right and left lens doses in detail.

\(^{9,15,19,22}\) The right and left lens doses in the 332 cases were compared using paired t-tests. The TFT, \(K_{a,r}\), \(P_{K,\alpha}\), PSD, and bilateral lens doses for each disease were compared using the Kruskal–Wallis test. Multiple comparisons were performed between each disease group using the Dunn’s test. The Pearson correlation test was used to determine whether the PSD and lens doses were linearly related to \(K_{a,r}\).

Statistical analyses were performed using JMP Pro version 15.0.0 (JMP, Cary, NC, USA). A \(p\)-value of <0.05 was considered statistically significant.
Table 1 Patient demographics, angiographic parameters and radiation doses of each case

<table>
<thead>
<tr>
<th></th>
<th>All cases (n = 332)</th>
<th>URAN cases (n = 272)</th>
<th>DAVF cases (n = 41)</th>
<th>AVM cases (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of cases</td>
<td>332</td>
<td>272</td>
<td>41</td>
<td>19</td>
</tr>
<tr>
<td>Age (years)</td>
<td>59.8 ± 12.7</td>
<td>60.5 ± 11.4</td>
<td>63.5 ± 13.1</td>
<td>40.6 ± 13.9</td>
</tr>
<tr>
<td>Body mass index</td>
<td>22.8 ± 3.4</td>
<td>22.6 ± 3.3</td>
<td>24.3 ± 3.2</td>
<td>21.7 ± 3.3</td>
</tr>
<tr>
<td>Total fluoroscopic time (min)</td>
<td>53.0 ± 29.9</td>
<td>46.4 ± 20.7</td>
<td>87.2 ± 46.5</td>
<td>74.0 ± 36.7</td>
</tr>
<tr>
<td>Reference air kerma (Gy)</td>
<td>(range: 13.0–189.3)</td>
<td>(range: 13.0–132.0)</td>
<td>(range: 13.4–181.8)</td>
<td>(range: 22.1–189.3)</td>
</tr>
<tr>
<td>Kerma area product (Gy-cm²)</td>
<td>454.5 ± 289.6</td>
<td>362.6 ± 146.7</td>
<td>809.3 ± 360.3</td>
<td>991.1 ± 459.5</td>
</tr>
<tr>
<td>Peak skin dose (Gy)</td>
<td>2.36 ± 1.28</td>
<td>2.02 ± 0.90</td>
<td>3.45 ± 1.50</td>
<td>4.60 ± 1.55</td>
</tr>
<tr>
<td>Right lens dose (mGy)</td>
<td>(range: 0.30–8.56)</td>
<td>(range: 0.30–5.77)</td>
<td>(range: 1.49–6.90)</td>
<td>(range: 2.14–8.56)</td>
</tr>
<tr>
<td>Left lens dose (mGy)</td>
<td>141.2 ± 54.6</td>
<td>102.3 ± 44.9</td>
<td>173.4 ± 63.8</td>
<td>151.5 ± 56.7</td>
</tr>
<tr>
<td>AVM cases</td>
<td>19 (5.1%)</td>
<td>11 (4.0%)</td>
<td>5 (12.2%)</td>
<td>1 (5.3%)</td>
</tr>
</tbody>
</table>

All values are represented as mean ± SD. AVM: arteriovenous malformation; DAVF: dural arteriovenous fistula; SD: standard deviation; URAN: unruptured aneurysm

Table 2 Number of cases exceeding the threshold dose of the tissue reaction

<table>
<thead>
<tr>
<th></th>
<th>All cases (n = 332)</th>
<th>URAN cases (n = 272)</th>
<th>DAVF cases (n = 41)</th>
<th>AVM cases (n = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSD >2.0 Gy (%)</td>
<td>163 (49.1%)</td>
<td>110 (40.4%)</td>
<td>34 (82.9%)</td>
<td>19 (100%)</td>
</tr>
<tr>
<td>PSD >3.0 Gy (%)</td>
<td>73 (22.0%)</td>
<td>36 (13.2%)</td>
<td>21 (51.2%)</td>
<td>16 (84.2%)</td>
</tr>
<tr>
<td>Left lens dose >500 mGy (%)</td>
<td>17 (5.1%)</td>
<td>11 (4.0%)</td>
<td>5 (12.2%)</td>
<td>1 (5.3%)</td>
</tr>
</tbody>
</table>

All cases n = 332; URAN cases n = 272; DAVF cases n = 41; AVM cases n = 19

AVM: arteriovenous malformation; DAVF: dural arteriovenous fistula; PSD: peak skin dose; URAN: unruptured aneurysm

Radiation Dose Measurement during Intervventional Neuroradiology

A total of 323 patients who underwent INR at our institution were analyzed for skin dose dosimetry using the RADIREC. This study included 95 men and 237 women, with a mean age of 59.8 years. There were 272 (81.9%), 41 (12.3%), and 19 (5.7%) patients with URAN, DAVF, and AVM, respectively. In the analysis of all cases, the PSD of the URAN, DAVF, and AVM cases were 164.8 ± 102.3 mGy, 313.4 ± 201.5 mGy, and 151.5 ± 56.7 mGy, respectively. The right lens dose was significantly higher than that to the right (p < 0.0001).

Table 2 shows the number of cases that exceeded the threshold doses for early transient erythema (2.0 Gy) and temporary epilation (3.0 Gy) of the skin and cartilaginous tissue in the eyes (500 mGy). The PSDs of 163 (49.1%) and 73 (22.0%) patients were >2.0 Gy and >3.0 Gy, respectively. The left lens dose was >500 mGy in 17 (5.1%) patients.

In the analysis of each disease, TFT, K₂, and Pₖₐ of DAVF and AVM cases were higher than those of URAN cases (p <0.001). Figure 2 shows the PSDs and lens doses of the URAN, DAVF, and AVM cases. The mean PSDs of the URAN, DAVF, and AVM cases were 2.02 ± 0.90 Gy, 3.45 ± 1.50 Gy, and 4.60 ± 1.55 Gy, respectively. The PSDs of the DAVF and AVM cases were significantly higher than those of the URAN cases (p <0.001). In the URAN cases, the PSDs of 110 patients (40.4%) exceeded 2.0 Gy and the PSDs were >3.0 Gy in 36 patients (13.2%). The left lens doses were >500 mGy in 11 (4.0%) patients. In the AVM cases, the PSDs of 34 patients (82.9%) exceeded 2.0 Gy and the PSDs were >3.0 Gy in 21 patients (51.2%). The left lens doses of five patients (12.2%) were >500 mGy. In the URAN cases, the PSDs of 19 patients (100%) exceeded 2.0 Gy and the PSDs were >3.0 Gy in 16 patients (84.2%). The left lens dose in one patient (5.3%) was >500 mGy. Among all the diseases, there were no cases in which the right lens dose exceeded 500 mGy.
The Pearson correlation test revealed statistically significant correlations between K_{ar} and PSD ($r = 0.9737$, $p < 0.001$), K_{ar} and right lens dose ($r = 0.9142$, $p < 0.001$), and K_{ar} and left lens dose ($r = 0.7702$, $p < 0.001$). The regression lines drawn using the PSD, right lens dose, and left lens dose as an outcome value (y) and K_{ar} (mGy) as a predictor variable (x) can be mathematically represented as $y = 0.49x$ ($R^2 = 0.9481$), $y = 0.022x$ ($R^2 = 0.8328$), and $y = 0.036x$ ($R^2 = 0.5933$), respectively (Fig. 3).

Discussion

Radiation skin injury (RSI) associated with INR, which includes early transient erythema and temporary epilation, is a well-known tissue reaction. Moreover, the International Commission on Radiological Protection published Publication 118 describing the effects of radiation on tissues and organs. This report suggested that the eye lens might be more sensitive to ionizing radiation than previously thought, and a threshold for an absorbed dose of 500 mGy was suggested. Therefore, accurate evaluation of skin and lens doses is important to reduce the radiation dose.

The mean right and left lens doses were 114.2 ± 54.6 mGy and 189.8 ± 160.3 mGy, respectively. The mean left lens dose was 1.66 times higher than that of the right lens because the lateral X-ray tube was located on the left side of the patients who were placed in a supine position. These results are in good agreement with those of our previous study on flow-diverter stenting cases. The lens dose closer to the X-ray tube may increase and exceed the threshold dose for cataracts. Therefore, protective measures, such as collimation of the radiation field and control of the pulse rate and frame number of the DSA, may be required.

In the analysis of the radiation dose for each disease, the PSD and lens doses of the DAVF and AVM cases were higher than those of the URAN cases. In the DAVF cases, the mean PSD was 3.45 ± 1.50 Gy and exceeded 3.0 Gy in 51.2% of the cases. The rate of left lens doses above 500 mGy was higher than that of other diseases. These results indicate that in DAVF cases, careful attention must be paid to the increased dose to the lens and skin. In the AVM cases, the mean PSD was 4.60 ± 1.55 Gy and exceeded 3.0 Gy in 84.2% of the cases. Regarding the left lens dose, only one case exceeded 500 mGy. In AVM cases, attention to the lens dose is also necessary because fluoroscopy and procedure times are extended; however, monitoring the
skin dose is more important. Our findings showed that attention should be given to tissues due to radiation variations between diseases.

The Pearson correlation test revealed statistically significant positive correlations between the PSD and $K_{a,r}$ ($r = 0.9737$), and a simple regression analysis revealed the possibility of precisely predicting the PSD using $K_{a,r}$ ($R^2 = 0.9481$). This result is similar to that of previous reports.\(^{19-22}\) PSD can be estimated accurately using $K_{a,r}$, although the prediction formula differs depending on the facility or angiographic machine. By using the PSD prediction formula, it is possible to evaluate PSD in real time, which is useful for avoiding RSI and cataracts in the INR. As with PSD, it is possible to predict the right lens dose with a high accuracy using $K_{a,r}$ ($R^2 = 0.8328$). The accuracy of the regression equation for the left lens dose was lower than that of the PSD and right lens dose ($R^2 = 0.5933$). This result was probably due to the working angle of the X-ray tubes in the INR. Although a few direct X-rays normally enter the left lens, they enter the lens depending on the setting of working angle. For INR, the dose on the left side was higher and more important. For an accurate assessment, it is desirable to measure the lens dose, as in the method used in this study.

Currently, the diagnostic reference level of angiography is being formulated in each country, most of which uses $K_{a,r}$ and P_{kA}. The diagnostic reference level is used to minimize stochastic effects and optimize the appropriate use of medical radiation. The evaluation of PSD and lens doses is important to avoid tissue reactions to the skin and lenses during high-dose exposure in INR. Thus, the $K_{a,r}$, P_{kA}, and PSD lens doses are complementary. By adding the
measured values of the PSD and lens doses or the estimated values using regression equations to the conventional dose management system using only K_{sa} and P_{ka}, it is possible to optimize radiation protection using parameters that consider biological effects.

Conclusion

In this study, patient radiation doses for URAN, DAVF, and AVM were measured using a direct measurement system. The PSD and lens doses of the DAVF and AVM cases were significantly higher than those of the URAN cases. Some DAVF cases exceeded the threshold dose for the skin and PSD. PSD exceeded the threshold dose in most AVM cases, whereas the left lens dose exceeded the threshold dose in only one case. Therefore, care should be taken when increasing the skin and lens doses in patients with DAVF and AVM. The Pearson correlation test revealed statistically significant positive correlations between K_{sa} and PSD, K_{sa}, and left lens dose, and K_{sa} and left lens dose. Simple regression analysis revealed the possibility of precisely predicting the PSD using K_{sa}.

Funding

This study was supported by JSPS KAKENHI (grant number: JP19K17183).

Disclosure Statement

The authors declare that they have no conflicts of interest.

References

