A Case of Nonfunctioning Pancreatic Endocrine Tumor with Atypical Imaging Findings due to Prominent Fibrosis of the Tumor Stroma

Arichika Hoshino, Takayuki Aimoto, Hideyuki Suzuki, Satoshi Mizutani, Hideaki Ishii, Keisuke Mishima, Yudai Wada, Seiji Kuroda, Aki Yagi, Takao Shimizu, Rina Oyama, Ryo Yamagiwa, Seiichi Satoh, Hidemi Oba, Tetsuo Shibuya and Eiji Uchida

1Department of Gastroenterology, Nippon Medical School Musashi Kosugi Hospital
2Department of Gastrointestinal Surgery, Nippon Medical School
3Department of Pathology, Nippon Medical School
4Surgery, Sayama Chuo Hospital

Abstract

The patient, a 56-year-old woman, was found during routine checkup to have a disorder of hepatic function. Abdominal ultrasonography showed an ill-defined hypechoic mass in the head and body of the pancreas; however, no blood-flow signal was observed within the tumor on Doppler ultrasonography. Abdominal computed tomography showed a low-density area in the arterial and portal venous phases. The lesion was visualized as an area of low signal intensity on both T1- and T2-weighted magnetic resonance images, whereas fluorodeoxyglucose positron emission tomography showed fluorodeoxyglucose accumulation in the tumor. Although a preoperative diagnosis was difficult to make, a rapid cytologic examination revealed evidence of a pancreatic endocrine tumor, and subtotal stomach-preserving pancreaticoduodenectomy with portal vein resection was performed. Histopathological examination showed tumor cell nests scattered in abundant fibrotic tissue; the tumor cells had proliferated in a cord-like fashion and showed immunostaining for chromogranin A. Staining for fibroblast activation protein α was seen in the fibroblastic cells contained within the fibrous stroma surrounding the tumor cell nests, whereas both the fibroblastic cells in the tumor and those in the stroma showed a high rate of staining for thrombospondin. We presume that tumor-associated fibroblasts were involved in the fibrosis of the tumor stroma.

(J Nippon Med Sch 2014; 81: 179–185)

Key words: pancreatic endocrine tumor, desmoplastic stroma, tumor-associated fibroblasts

Introduction

Pancreatic endocrine tumors, which are normally hypervascular tumors, often grow in an expansive manner and are visualized as well-defined, deeply-staining tumors on contrast-enhanced computed tomography (CT). Therefore, preoperative diagnosis
is rarely difficult. However, diagnosis may be
difficult in patients with cyst formation1 or
prominent fibrosis of the tumor stroma2.

Many recent reports suggest that tumor-
associated fibroblasts (TAFs) are involved in the
prominent fibrosis of the stroma of malignant
tumors, promote the infiltration and metastasis of
cancer cells, and reflect the malignant grade of the
tumor3.

Herein, we report on a patient with a pancreatic
endocrine tumor that was difficult to diagnose
because of the prominent fibrosis of the tumor
stroma; histopathological examination was
performed to examine the involvement of TAFs in
the stromal fibrosis.

Case Presentation

The patient was a 56-year-old woman who was
found during a routine checkup to have a disorder of
hepatic function and was referred to our department
for further investigation in September 2009. She was
otherwise in good health and without complaint but
had undergone total hysterectomy for uterine
myoma at the age of 36 years. Because CT and
magnetic resonance (MR) imaging performed at the
outpatient department suggested the possibility of a
pancreatic tumor, the patient was admitted to our
department for further medical examination and
treatment.

Findings on physical examination on admission
were as follows: height, 155.0 cm; weight, 52.0 kg;
blood pressure, 100/61 mm Hg; pulse, 75/minute,
regular; and body temperature, 36.5°C. There was no
conjunctival pallor, no evidence of jaundice, and no
abnormal findings on examination of the heart or
lungs. The abdomen was flat and soft. The liver,
spleen, and kidney were not palpable. There was no
abdominal tenderness, and no masses was palpable.

Laboratory studies on admission showed mild
elevations of the serum levels of aspartate
aminotransferase, alanine aminotransferase, and γ-
glutamyl transpeptidase; significantly elevated
fasting blood glucose (191 mg/dL) and HbA1c (7.8%);
normal serum levels of tumor markers (carbohydrate antigen 19-9, carcinoembryonic
antigen, and Duke pancreatic monoclonal antigen
type 2); normal serum levels of immunoglobulin (Ig) G and IgG4; and a negative serum test for
antinuclear antibody.

Abdominal ultrasonography showed an ill-defined
hypoechoic mass with an irregular margin,
measuring 40×25 mm, in the head and body of the
pancreas. Doppler ultrasonography showed blood-
flow signals in a part of the tumor margin but not
within the tumor itself (Fig. 1). Abdominal CT
showed an ill-defined low-density lesion measuring
3.5×1.6 cm in the head and body of the pancreas
which was visualized as having isodensity to low
density in the portal venous phase (Fig. 2). Although
mild atrophy and calcification were observed in the
pancreatic tail, no dilatation of the main pancreatic
duct was observed. Abdominal MR T1- and T2-
weighted images showed low-signal intensity in the

Fig. 1 a: Abdominal ultrasonography showing an
irregular, ill-defined, hypoechoic tumor in
the body of the pancreas. b: Doppler
ultrasonography revealed no blood-flow
signals within the tumor.
head and body of the pancreas. Endoscopic retrograde cholangiopancreatography was performed, but because of hemispheric enlargement of the papilla of Vater, intubation of the pancreatic duct was difficult, and pancreatic duct imaging was impossible; however, the bile duct images were normal. Fluorodeoxyglucose (FDG) positron emission tomography (PET) showed uptake in the enlarged head and body of the pancreas (standard uptake value: 5.4 at 60 minutes, 7.0 at 120 minutes) (Fig. 3).

On the basis of these imaging findings and despite the difficulty in arriving at a definitive preoperative diagnosis, laparotomy was performed for suspected conventional pancreatic cancer or tumor-forming pancreatitis. The entire pancreas was markedly hardened, and the head and body of the pancreas were enlarged. Intraoperative rapid diagnosis with fine-needle aspiration cytology showed evidence of a pancreatic endocrine tumor. Because portal infiltration was observed, subtotal stomach-preserving pancreaticoduodenectomy, portal vein resection, and D2 lymph node dissection were performed. The postoperative course was uneventful and without complications. The patient recovered fully and was discharged on day 32 after the operation.

On gross examination the cut-surface of the resected specimen was grayish white and entirely fibrotic. Histopathological examination revealed scattered tumor cell nests in an abundant fibrotic stroma (Fig. 4a). The tumor was highly infiltrative, showing partial nerve infiltration. The tumor cells had proliferated in cord-like and follicular patterns, with a high tumor nuclear/cytoplasmic ratio and abundant chromatin; mitotic figures were also seen (Fig. 4b).

Immunohistochemical studies showed staining for
chromogranin A, neuron-specific enolase, and CD56 and but showed no staining for insulin, glucagon, gastrin, or somatostatin. With regard to the growth potential of the tumor, 2% or more cells showed staining for Ki-67. Accordingly, a nonfunctioning, well-differentiated pancreatic endocrine tumor was diagnosed.

According to the General Rules for the Study of Pancreatic Cancer 5th Edition, the tumor was classified as Phb, 3×2×10-cm, mixed type, pTS4, pCH (−), pDU (−), pS (−), pRP (−), pPV (−), pA (−), pPL (−), pOO (−), pN0, cM0, and stage III.

To examine the involvement of the TAFs in the fibrosis of the tumor stroma, immunostaining was performed for fibroblast activation protein (FAP) α, a fibroblastic cell marker, and thrombospondin, a marker of tumor infiltration. After antigen retrieval, polyclonal antibodies against FAP-α (Abcam plc, Cambridge, UK) and thrombospondin (Abcam) diluted 1:100 were used as the primary antibodies, followed by staining with Autostainer (Dako, Glostrup, Denmark) by means of the EnVision method (Dako). Although some of the myofibroblastic cells in the abundant fibrous stroma surrounding the tumor were positive for FAP (Fig. 5), none of the fibroblastic cells adjacent to the tumor were positive for FAP. A high positivity rate for thrombospondin was observed in both the tumor cells and in the fibroblastic cells in the tumor stroma (Fig. 5). Neither thrombospondin nor FAP was expressed in the fibroblastic cells in the normal

Fig. 4 a: Nests of tumor cells were embedded in prominent fibrous stroma (hematoxylin and eosin staining, ×40). b: This tumor nest was composed of cuboidal cells with a high nuclear/cytoplasmic ratio, hyperchromatic nuclei, and mitotic figures (×400).

Fig. 5 a: Staining for FAP was positive in the fibroblasts in the stroma surrounding the tumor but not in the fibroblasts within the tumor-adjacent stroma. b: Both tumor cells and fibroblasts were positive for thrombospondin (×400).
pancreatic tissue.

Discussion

Pancreatic endocrine tumors are rare tumors accounting for 1% to 2% of all pancreatic tumors; about 40% of all pancreatic endocrine tumors are reported to be nonfunctioning pancreatic endocrine tumors. Nonfunctioning pancreatic endocrine tumors produce no hormones or produce hormones at low levels, and no characteristic symptoms associated with the hormone secretion are observed. Therefore, the diagnosis is often made after the tumors have become large, and symptoms, such as an abdominal mass, abdominal pain, and jaundice, are manifested; sometimes, these tumors are detected at routine checkups, as in the present patient.

Our patient had imaging findings that differed from those of patients with typical pancreatic endocrine tumors. Normally, pancreatic endocrine tumors are hypervascular, and the imaging findings reflect their vascularity. Abdominal ultrasonography commonly shows a well-defined hypoechoic mass with a regular margin, and Doppler ultrasonography often shows blood-flow signals. Plain CT reveals a well-defined low-density area, and contrast-enhanced CT, the most useful examination for preoperative diagnosis, shows marked enhancement in the arterial phase. In general, these tumors show low signal intensities on T1-weighted MR images and high signal intensities on T2-weighted MR images, reflecting the high density of the tumor cells. The mass in our patient was ill-defined and did not show blood-flow signals on Doppler ultrasonography or enhancement on contrast-enhanced CT but showed low signal intensity on both T1- and T2-weighted MR images. Histopathological examination showed prominent fibrosis of the tumor stroma; both tumor cell density and vascular density were low. These imaging findings seem to reflect the fibrosis of the tumor stroma. Sugawara et al. have reported a case of malignant pancreatic endocrine tumor in which the main imaging finding was fibrosis of the tumor. Ikenaga et al. have also reported a case of small nonfunctioning pancreatic endocrine tumor with fibrosis in which the lesion showed low signal intensity on T2-weighted images, reflective of fibrosis, as in our patient. Irie et al. have reported that the percentage of fibrosis in the stroma of nonfunctioning tumors is as high as 82%, as reflected by imaging findings that vary much more than those of functioning tumors.

Although our patient was first suspected to have pancreatic duct cancer, which is a nonhypervascular tumor, she had normal serum levels of tumor markers and no jaundice or dilatation of the main pancreatic duct. Although tumor-forming pancreatitis and autoimmune pancreatitis were also suspected, the patient had no history of alcohol intake or pancreatitis, had normal levels of IgG and IgG4, and was seronegative for antinuclear antibody. Subsequently, FDG-PET revealed FDG accumulation, and surgery was performed for a suspected malignant tumor; a definitive preoperative diagnosis could not be made.

Fibrosis of the tumor stroma involving TAFs reportedly promotes infiltration and proliferation of tumor cells and reflects the malignant grade of the tumor. Wels et al. have proposed “migratory neighbors and distant invaders” as the sources of the TAFs, referring to 1) the involvement of the epithelial-mesenchymal transition (epithelial cells in the tumor tissues), 2) the presence of fibroblastic cells in the tumor stroma, and 3) the presence of bone marrow-derived stem cells. TAFs are present in the tumor stroma and are considered to be fibroblastic cells functioning in a microenvironment promoting tumor progression; unlike normal fibroblastic cells, they contain various tumor growth-promoting factors and fibroblastic cell markers. Normally, TAFs are identified on the basis of the expression of 1) fibroblastic cell markers (e.g., FAP), 2) thrombospondin 1 and stromelysin 1 as infiltration markers of the tumor cells, and 3) myofibroblastic cell markers and various growth factors (e.g., transforming growth factor β, vascular endothelial growth factor).

In the present study, fibroblastic cells in the stroma surrounding the tumor expressed both FAP and thrombospondin 1, whereas the normal fibroblastic cells adjacent to the tumors did not
express FAP, suggesting that the fibroblastic cells are involved in promoting the prominent fibrosis of the tumor stroma. Many reports have described high rates of FAP expression in the TAFs in the tumor stroma, but not in the fibroblastic cells in the adjacent normal tissue, in colorectal cancer, ovarian cancer, and lung cancer14,15. Cohen et al.16 have reported a high rate of FAP expression in invasive pancreatic cancer and have suggested that a high rate of FAP expression in TAFs surrounding the tumor correlates with the presence of lymph-node metastasis, tumor recurrence, and the extent of tumor invasion; moreover, they showed that low FAP expression in the fibroblastic cells adjacent to the tumor correlates with fibrosis of the tumor stroma. High FAP expression is considered to induce denaturation of the extracellular matrix and to inhibit fibrosis16, suggesting that the low FAP expression in the TAFs adjacent to the tumor promotes fibrosis of the tumor stroma. Meanwhile, thrombospondin, a glycoprotein observed in platelet \(\alpha \) granules and the extracellular matrix, has been reported to promote tumor neovascularization and is closely involved in infiltration and metastasis in cancer tissues17. Kasper et al.18 have reported that of the rate of thrombospondin expression is high in pancreatic duct cancer and that tumors expressing thrombospondin show a high capacity for infiltration and metastasis. In the present patient, high thrombospondin expression was noted in fibroblastic cells in the tumor stroma, suggesting the involvement of these cells in tumor infiltration, such as nerve infiltration. In the limited study in this patient, we were not able to confirm that the TAFs are involved in the prominent fibrosis of the tumor stroma. Further study of a larger number of patients is necessary in the future.

Conflict of Interest: Arichika Hoshino and other co-authors have no conflict of interest.

References

17. Qian X, Tuszinski GP: Expression of thrombospondin-1 in cancer: a role in tumor