Efficacy of Tracheostomy for Central Alveolar Hypoventilation Syndrome Caused by Lateral Medullary Infarction

Masahiro Mishina¹, Seiji Ohkubo¹, Nobuo Kamiya¹, Arata Abe¹, Satoshi Suda¹, Masanori Sakamaki¹, Shushi Kominami², Takayuki Mizunari², Shiro Kobayashi² and Yasuo Katayama¹

¹Department of Neurological Science, Graduate School of Medicine, Nippon Medical School
²Department of Neurosurgery, Neurological Institute, Nippon Medical School Chiba Hokusoh Hospital

Abstract

Central alveolar hypoventilation syndrome (CAHS) is a rare and potentially fatal condition. However, respiratory care for patients with CAHS caused by lateral medullary infarction (CAHS-LMI) remains an important unsolved problem. We describe 2 patients with CAHS-LMI and review the case reports for 17 previously described patients. Patient 1 was a 78-year-old man who was referred to our hospital because of dizziness. After admission, Wallenberg syndrome developed. Magnetic resonance imaging showed left LMI. He had hypercapnia and respiratory acidosis the next afternoon and temporarily received mechanical ventilation. A tracheotomy was performed on the 12th hospital day, and the patient was weaned from the ventilator on the 18th hospital day. Patient 2 was 72-year-old man who was referred to our hospital because of dizziness and gait disturbance. Wallenberg syndrome was diagnosed after admission, and magnetic resonance imaging showed right LMI. His consciousness deteriorated, and hypercapnia developed on the ninth hospital day. The patient received ventilatory support, and a tracheotomy was performed on the 12th hospital day. He was weaned from the ventilator by the 16th hospital day. Consistent with our findings, most previously reported cases of CAHS-LMI were initially associated with mild symptoms, which subsequently worsened. Five of the 19 patients (26.3%) died within 1 month after onset, and 7 patients (36.8%) died within 1 year. Tracheotomy was performed in 12 patients, 2 of whom died 1 month after onset (16.7%); another patient died of chronic renal failure after 2 years. Tracheotomy seemed to be an effective procedure in patients with CAHS-LMI. We speculate that tracheotomy assists alveolar ventilation by reducing dead space ventilation. Closure of the tracheotomy should, therefore, be avoided in patients with CAHS-LMI, even if respiratory status is good.

(J Nippon Med Sch 2014; 81: 276–284)

Key words: lateral medullary infarction, Ondine’s curse, tracheostomy
Introduction

The respiratory center is a collection of neurons with unclear boundaries and consists of various components, such as the dorsal and ventral respiratory group in the reticular formation of the medulla oblongata and the apneustic and pneumotaxic center in the pons. In humans, respiratory control involves 2 functional elements: the metabolic control system and the behavioral control system. The metabolic control system is located in the medulla oblongata and receives inputs from chemoreceptors in the carotid body and medulla oblongata and from respiratory proprioceptors. The behavioral control system governs waking behavior, such as talking, laughing, and crying, and adjusts the respiratory rhythm and the amount of ventilation, both voluntarily and involuntarily. Respiratory control involves both the metabolic and behavioral control systems in the waking state, rapid eye movement (REM) sleep, and light non-REM sleep. During sound non-REM sleep, only the metabolic control system regulates respiratory control.

The pathogenesis of Ondine’s curse, also called central alveolar hypoventilation syndrome (CAHS), is attributed to dysfunction of the metabolic control system, involving the medullary respiratory center itself or its neural pathways. The ventilatory response to increased levels of carbon dioxide in plasma is lost or diminished. Patients fall into hypventilation if they do not breathe voluntarily via the behavioral control system. In the waking state, therefore, the patient can continue to breathe by means of the breathing behavioral regulatory system and thereby compensate for hypoventilation. During sound non-REM sleep, however, both the metabolic and behavioral control systems do not work, and patients fall into potentially fatal, severe chronic hypoventilation.

Previous studies have documented 17 patients with CAHS caused by lateral medullary infarction (CAHS-LMI, Table 1). Although CAHS is often fatal, respiratory care for CAHS-LMI remains an important unsolved problem. We describe 2 surviving patients who presented with CAHS-LMI. We also review 17 previously documented patients with CAHS-LMI and discuss strategies for respiratory control in CAHS-LMI.

Material and Methods

Patient 1

A 78-year old man was referred to our hospital because of dizziness at 10 p.m. and was admitted. There were no clinically significant abnormalities on neurological examination or chest radiography (Fig. 1A). Because the oxygen saturation had decreased at midnight, we increased the oxygen dose of the patient. The next morning, dizziness became milder. However, disturbed consciousness developed at 2 p.m. Arterial blood gas analysis showed hypercapnia and respiratory acidosis (PO2, 106 mm Hg; PCO2, 101 mm Hg; pH, 7.124). Tracheal intubation was immediately performed, and the patient received ventilatory support. He then regained consciousness. We also diagnosed Wallenberg syndrome, associated with left blepharophimosis, miosis, incoordination, right superficial sensation disorder of the upper extremity, and severe dysphagia. Therefore, his neurological status as well as his respiratory status had deteriorated. Only mild atelectasis of the right lower lung field was seen on a chest X-ray film (Fig. 1B). On the third hospital day, magnetic resonance imaging (MRI) of the head showed a high-intensity region in the left lateral medulla oblongata on diffusion-weighted images (DWI, Fig. 2A) and T2-weighted images (T2WI, Fig. 2B). Figure 3 shows the distribution of the lesion and the anatomy of the medulla oblongata. Magnetic resonance angiography (MRA) demonstrated weak signals for the left vertebral artery (Fig. 2C and 2D). We diagnosed CAHS-LMI due to atherothrombosis. The endotracheal tube was removed on the fourth hospital day, because the respiratory status had been good during the daytime. On the sixth hospital day, however, hypercapnia (PCO2, 96 mmHg) recurred at midnight, and the endotracheal tube was reinserted. A tracheotomy was performed on the 12th hospital day. On the 18th hospital day, ventilatory support was discontinued. While the
<table>
<thead>
<tr>
<th>No</th>
<th>Age</th>
<th>Initial symptoms</th>
<th>Respiratory failure after onset</th>
<th>Ischemic lesion</th>
<th>Vascular lesion</th>
<th>Remarks</th>
<th>Tracheotomy</th>
<th>Paper</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36 F</td>
<td>Dyspnea</td>
<td>0 hour</td>
<td>Left lateral medulla oblongata and cerebellum (autopsy)</td>
<td>Dissection of left vertebral artery (autopsy)</td>
<td>Died suddenly on the 31st hospital day.</td>
<td>Yes</td>
<td>Devereaux et al.²</td>
</tr>
<tr>
<td>2</td>
<td>58 F</td>
<td>Dyspnea, left Wallenberg syndrome</td>
<td>0 hour</td>
<td>Unknown</td>
<td>Unknown</td>
<td>Tracheotomy several hours after admission.</td>
<td>Yes</td>
<td>Devereaux et al.³</td>
</tr>
<tr>
<td>3</td>
<td>52 M</td>
<td>Dizziness, nausea, headache</td>
<td>5 hours</td>
<td>Left lateral medulla oblongata</td>
<td>90% stenosis of left vertebral artery (autopsy)</td>
<td>Artificial respiration more than 30 days, Spontaneous breathing eventually. Merger of myocardial infarction. Died after a month.</td>
<td>Yes</td>
<td>Levin et al.⁴</td>
</tr>
<tr>
<td>4</td>
<td>49 M</td>
<td>Left Wallenberg syndrome</td>
<td>Unknown</td>
<td>Unknown (CT)</td>
<td>Unknown</td>
<td>CPAP was efficacious.</td>
<td>Unknown</td>
<td>Askensy et al.⁵</td>
</tr>
<tr>
<td>5</td>
<td>71 M</td>
<td>Dizziness, double vision.</td>
<td>3 days</td>
<td>Left lateral and dorsomedial medulla oblongata (MRI)</td>
<td>Stenosis of bilateral vertebral and carotid arteries (autopsy)</td>
<td>Died of pneumonia with ventilator after a month.</td>
<td>Yes</td>
<td>Hashimoto et al.⁶</td>
</tr>
<tr>
<td>6</td>
<td>73 M</td>
<td>Ataxic gait</td>
<td>4 days</td>
<td>Left lateral medulla oblongata and lower pons (autopsy)</td>
<td>Occlusion of left vertebral artery (autopsy)</td>
<td>Died of pneumonia with ventilator after 12 days.</td>
<td>Unknown</td>
<td>Bogousslavsky et al.⁷</td>
</tr>
<tr>
<td>7</td>
<td>65 M</td>
<td>Dizziness, nausea, headache</td>
<td>1 day</td>
<td>Left lateral medulla oblongata (autopsy)</td>
<td>Occlusion of left vertebral artery (autopsy)</td>
<td>Died of chronic renal failure after 2 years.</td>
<td>Yes</td>
<td>Takehara et al.⁸</td>
</tr>
<tr>
<td>8</td>
<td>64 M</td>
<td>Gait disturbance</td>
<td>3 days</td>
<td>Right lateral medulla oblongata (MRD)</td>
<td>Occlusion of right vertebral artery (angiography)</td>
<td>Temporary artificial respiration, Possible to walk with assistance, and the cavity of tracheotomy was closed after 6 months.</td>
<td>Yes</td>
<td>Kraus et al.⁹</td>
</tr>
<tr>
<td>9</td>
<td>49 M</td>
<td>Bradycardia, dysphagia, dysarthria, hypoesthesia of left face, right hemiparesis</td>
<td>2 days</td>
<td>Bilateral thalamus, occipital lobe, pons and medulla oblongata, and left cerebellum and cerebral peduncle (MRI)</td>
<td>Occlusion of left vertebral artery (angiography)</td>
<td>Temporary artificial respiration, and nasal CPAP. Separated from ventilator with alprostadil.</td>
<td>Unknown</td>
<td>Iwasaki et al.¹⁰</td>
</tr>
<tr>
<td>10</td>
<td>78 M</td>
<td>Dizziness, gait disturbance</td>
<td>7 days</td>
<td>Right lateral and dorsomedial medulla oblongata (MRI)</td>
<td>Occlusion of right vertebral artery (angiography)</td>
<td>Separated from ventilator with alprostadil. Died 16 hours after onset.</td>
<td>No</td>
<td>Terao et al.¹¹</td>
</tr>
<tr>
<td>11</td>
<td>70 M</td>
<td>Ataxic gait, nausea</td>
<td>15 hours</td>
<td>Left lateral medulla oblongata (autopsy)</td>
<td>Occlusion of left vertebral artery due to arteriosclerosis (autopsy)</td>
<td>BIPAP was efficacious. Died of sepsis after 23 months.</td>
<td>Unknown</td>
<td>Schestatsky et al.¹²</td>
</tr>
<tr>
<td>12</td>
<td>55 M</td>
<td>Dizziness, nausea, dysarthria, headache, left hemiparesis</td>
<td>12 hours</td>
<td>Bilateral cerebellum, and right thalamus, pons, medulla oblongata (MRI)</td>
<td>Unknown</td>
<td>Separated from ventilator with acetazolamide after 25 months.</td>
<td>Yes</td>
<td>Takahatake et al.¹³</td>
</tr>
<tr>
<td>13</td>
<td>59 M</td>
<td>Dysarthria, dysphagia, numbness of left body.</td>
<td>1 day</td>
<td>Left lateral medulla oblongata (MRD)</td>
<td>Dissection of left vertebral artery (angiography)</td>
<td>Temporary artificial respiration, Separated from ventilator with acetazolamide after 25 months.</td>
<td>Yes</td>
<td>Arai et al.¹⁴</td>
</tr>
<tr>
<td>14</td>
<td>86 M</td>
<td>Gait disturbance, hoarseness, dysarthria</td>
<td>5 days</td>
<td>Right lateral medulla oblongata (MRD)</td>
<td>Unknown</td>
<td>Tracheotomy on the 8th hospital day. Separated from ventilator daytime after 9 months.</td>
<td>Yes</td>
<td>Arai et al.¹⁴</td>
</tr>
<tr>
<td>15</td>
<td>83 F</td>
<td>Dysphagia</td>
<td>3 days</td>
<td>Right lateral medulla oblongata (MRI)</td>
<td>Normal (MRA)</td>
<td>Separated from ventilator after 2 months.</td>
<td>Yes</td>
<td>Arai et al.¹⁴</td>
</tr>
<tr>
<td>16</td>
<td>79 F</td>
<td>Dizziness, dysarthria, numbness of left body.</td>
<td>Unknown</td>
<td>Left lateral medulla oblongata (MRD)</td>
<td>Normal (MRA)</td>
<td>Died of pneumonia and sepsis with ventilator after 2 months.</td>
<td>Unknown</td>
<td>Pedrosa et al.¹⁵</td>
</tr>
<tr>
<td>17</td>
<td>73 F</td>
<td>Right bephyrophagomia, dizziness,</td>
<td>3 days</td>
<td>Right lateral medulla oblongata (MRI)</td>
<td>Occlusion of right vertebral artery (MRA)</td>
<td>Tracheotomy on the 18th hospital day. Separated from ventilator daytime after 2 months.</td>
<td>Yes</td>
<td>Fukushima et al.¹⁶</td>
</tr>
<tr>
<td>18</td>
<td>78 M</td>
<td>Dizziness</td>
<td>2 days</td>
<td>Left lateral and dorsomedial medulla oblongata (MRI)</td>
<td>Low signal of left vertebral artery (MRA)</td>
<td>Separated from ventilator on the 18th hospital day.</td>
<td>Yes</td>
<td>Case 1</td>
</tr>
<tr>
<td>19</td>
<td>72 M</td>
<td>Dizziness, gait disturbance</td>
<td>9 days</td>
<td>Right lateral medulla oblongata (MRI)</td>
<td>Low signal of right vertebral artery but normal BPAS (MRA)</td>
<td>Separated from ventilator on the 16th hospital day.</td>
<td>Yes</td>
<td>Case 2</td>
</tr>
</tbody>
</table>

BPAS=basiparallel anatomical scanning, CPAP=continuous positive airway pressure, BIPAP=bilevel positive airway pressure.
Efficacy of Tracheostomy in Ondine’s Curse

Fig. 1 Chest X-ray films on the first (A), second (B), 109th (C), and 158th (D) hospital days.

Fig. 2 A diffusion-weighted image (A) and a T2-weighted image (B) obtained with magnetic resonance imaging on the third hospital day and magnetic resonance angiograms of the head (C) and neck (D) obtained on the sixth hospital day. Magnetic resonance imaging shows a high-intensity region in the left lateral medulla oblongata. Magnetic resonance angiograms show weak signals for the left vertebral artery.

The patient was transferred to a rehabilitation hospital on the 116th hospital day. Because his respiratory status was good, the tracheotomy tube was removed, and the tracheostoma site was

patient was breathing room air, the PO2 was about 60 mm Hg, and the PCO2 was about 40 mm Hg. A speaking-type tracheotomy tube was inserted on the 39th hospital day. Because dysphagia was severe, gastrostomy was performed on the 98th hospital day.
covered with gauze on the 150th hospital day. His consciousness and respiratory status deteriorated again, and he was transferred to our hospital on the 158th hospital day. Laboratory examinations revealed hypercapnia (PCO$_2$, 73.1 mm Hg) and mild inflammation (white blood cell count, 9,310 /μL; C-reactive protein, 1.1 mg/dL). A chest X-ray film showed only mild pneumonia in the left lower lung field (Fig. 1D). We performed artificial respiration by means of a tracheotomy tube, and his condition soon improved. We decided that the tracheotomy tube should not be removed because the reduction in airway dead space due to the tracheotomy had apparently improved the CAHS. After that, the patient could again breathe without the ventilator during the daytime but used a portable ventilator at night.

Patient 2

A 72-year old man had dizziness and nausea on waking and rested at home. However, his symptoms worsened, and he could not walk. He was then transported to our hospital by ambulance at noon. On admission, the consciousness was clear. Neurologic examination revealed right hemiparesis, saccadic eye movements, and dysarthria. After 1 hour, his symptoms worsened, and he presented with right blepharophimosis, miosis, curtain sign, deviation of the tongue, absence of the gag reflex, incoordination, and severe dysphagia. Wallenberg syndrome was diagnosed. He also had disturbed superficial sensation of the left side of the face and upper and lower extremities. A DWI (Fig. 4A) showed a high-intensity region in the right lateral medulla oblongata, although A T, WI (Fig. 4B) showed no abnormalities. A chest X-ray film on admission showed no abnormalities (Fig. 4C). MRA demonstrated occlusion of the right vertebral artery, but basiparallel anatomical scanning showed both the right and left vertebral arteries with no stenosis. Right lateral medullary infarction caused by atherothrombosis was thus diagnosed. On the ninth hospital day, his consciousness deteriorated in the early morning, and the PCO$_2$ was 115 mm Hg. Tracheal intubation was immediately performed, and he regained consciousness. Tracheotomy was performed on the 12th hospital day. Ventilatory support was discontinued on the 16th hospital day, and the patient was transferred to a rehabilitation hospital on the 41st hospital day. Because swallowing function was not restored, a cricopharyngeal myotomy with laryngeal suspension was performed on the 166th hospital day.

Results

Nineteen patients with CAHS-LMI19, including our patients, have been described (Table 1). Two patients described by Devereaux et al.2 were transported to the hospital because of respiratory failure. The other patients initially had mild symptoms, such as dizziness and gait disturbance, on admission but their condition subsequently deteriorated. Seven patients presented with CAHS
within 20 hours after onset, and 2 patients presented with CAHS more than 7 days after onset. One patient had bilateral medullary lesions, 11 had left medullary lesions, and 7 had right medullary lesions. Dissection of the vertebral artery was found in 2 patients. Stenosis or occlusion of the vertebral artery with atherosclerosis was confirmed in 4 patients at autopsy. Five (26.3%) of the 19 patients died within 1 month after onset, and 7 (36.8%) died within 1 year. Tracheotomy was performed in 12 patients. Two (16.7%) of these patients died 1 month after onset, and another patient died of chronic renal failure after 2 years. It is unclear whether a tracheotomy was performed in 6 patients.
Discussion

Previous studies have reported that obstructive sleep apnea syndrome (OSAS) is a risk factor for death in patients with stroke. As mentioned earlier, CAHS-LMI has a higher mortality rate than does stroke with OSAS. Five of 19 patients with CAHS-LMI died within 1 month after onset. However, only 2 of the 12 patients who underwent tracheotomy died within 1 month. We speculate that the patients who died without undergoing tracheotomy were in poor general health. We further speculate that tracheotomy improves alveolar hypoventilation by reducing dead space ventilation, as described later.

Alveolar hypoventilation is caused by failure of the respiratory center, neural and neuromuscular transmission, muscle, chest wall, lung, and airways. Arterial carbon dioxide tension (PaCO$_2$) is defined as:

$$ PaCO_2 = k \frac{V_{CO_2}}{V_a}, \quad (1) $$

where factor k (0.863) is the constant of proportionality, V_{CO_2} is the volume of carbon dioxide eliminated per minute, and V_a is alveolar ventilation. Therefore, reduced alveolar ventilation causes hypercapnia. Alveolar ventilation is defined as:

$$ V_a = V_e - V_d \quad (2) $$

where V_e is minute ventilation, and V_d is dead space ventilation. Expansion of the dead space leads to decreased alveolar ventilation, such as that associated with breathing with a snorek. On the other hand, a reduction in the dead space assists alveolar ventilation. Tracheotomy shortens the airway and reduces dead space ventilation. Therefore, we believe that the tracheotomy effectively promotes alveolar hypoventilation. Some patients with the CAHS-LMI, including our patients, did not require ventilatory support after tracheotomy.

We suggest that closure of the tracheotomy should be avoided in patients with CAHS-LMI, even if respiratory status is good. Alveolar ventilation in patient 1 deteriorated after removal of the tracheotomy tube. In one previous patient, however, the tracheostoma site could be closed 6 months after onset. Continuous positive airway pressure (CPAP) was reported to be efficacious in 3 patients with CAHS-LMI. CPAP is now often used in patients with OSAS. Alveolar hypoventilation might resolve without a reduction in dead space in some patients with CAHS-LMI. We speculate that CPAP may not be indicated for every patient with CAHS-LMI, because in contrast to tracheotomy, CPAP does not reduce dead space. As mentioned earlier, the distribution of neurons in the respiratory center is unclear, and differences in recovery might be related to individual differences in the distribution of neurons participating in respiratory function.

The respiratory center is thought to exist bilaterally in the brainstem. Only 1 of the 19 patients with CAHS-LMI had bilateral lesions of the medulla oblongata, and all other patients had unilateral lesions. Twice as many patients had left-sided lesions as had right-sided lesions. The left medulla oblongata might play a dominant role in respiratory control. While awake, patients with unilateral lesions can potentially compensate for alveolar hypoventilation by means of the behavioral control system. We could not delineate characteristic differences in the distribution of lesions between usual medullary infarction and CAHS-LMI because some case reports did not include images or describe the pathological features of lesions. The lesions in some patients did not include the inferior cerebellar peduncle. The region surrounding the nucleus ambiguus, the solitary tract, and the trigeminal nucleus may be a common focus. However, we do not assume that hypoventilation develops in all patients with lesions in regions of the brain involved in respiratory control. The brain must include a “safety net,” which acts to prevent the development of alveolar hypoventilation. The safety net may be related to the “obscure” nature of the respiratory center. Mild alveolar hypoventilation might not be diagnosed in some patients. Further studies are needed to achieve a better understanding of these matters.

The development of CAHS is apparently related to initial symptoms in patients with CAHS-LMI (Table 1). Two patients were brought to the hospital because of respiratory failure. The others had mild initial symptoms, such as dizziness and gait...
disturbance, but their condition deteriorated later. In
patient 2, CAHS developed on day 9. Perhaps the
patient could not sleep soundly because of the stress
and noise in the intensive care unit for stroke, and
his behavioral control system might have
compensated for alveolar hypoventilation for a
prolonged time. In any case, respiratory status
should be closely monitored, particularly at night, in
patients in poor condition who have LMI. Many
patients had prolonged stenosis or occlusion of the
vertebral artery, although LMI was caused by
dissecting aneurysms in 2 patients. Dissection is the
second most common cause of LMI: atherothrombosis of the vertebral artery is the most
common cause. Our findings suggest that
atherothrombotic infarction can cause CAHS-LMI.

Conclusion

We have described 2 patients with CAHS-LMI
and reviewed previous case reports of CAHS-LMI.
CAHS-LMI is a rare and potentially fatal condition.
Although many patients with CAHS-LMI had a
progressive course, there were no characteristic
findings of the initial symptoms of the patients. We
did not find also characteristic of the distribution of
medullar lesions in the patients with CAHS-LMI.
This fact may be related to the obscure distribution
of neurons in the respiratory center. In patients with
progressive LMI, respiratory status should be
closely monitored at night. Tracheotomy was
efficacious in patients with CAHS-LMI. We speculate
that a reduction in airway dead space after
tracheotomy improves alveolar hypoventilation.

Conflict of Interest: There is no possible conflict of
interest related to this paper.

References

1. Berger AJ, Mitchell RA, Severinghaus JW: Regula-
tion of respiration: (second of three parts). N
2. Nannapaneni R, Behari S, Todd NV, Mendelow AD:
Retracing "Ondine's curse". Neurosurgery 2005; 57:
354-363.
3. Devereaux MW, Keane JR, Davis RL: Automatic
respiratory failure associated with infarction of the
medulla. Report of two cases with pathologic study
4. Levin BE, Margolis G: Acute failure of automatic
respirations secondary to a unilateral brainstem
5. Askenasy JJ, Goldhammer I: Sleep apnea as a
6. Hashimoto Y, Watanabe S, Tanaka F, Uyama E,
Araki S: A case of medullary infarction presented
lateral medullary syndrome and respiratory arrest
after ataxic respiration. Clin Neurol 1989; 29: 1017-
1022.
Respiratory failure and unilateral caudal brainstem
8. Takehara M, Ishikawa K, Hiroi T, Fujimura H,
Yorifuji S: Central type of sleep apnea syndrome
caued by unilateral lateral medullary infarction. Clin
9. Kraus J, Heckmann JG, Druschky A, Erbguth F,
Neundorfer B: Ondine's curse in association with
diabetes insipidus following transient vertebrobasilar
10. Iwasaki Y, Sone M, Kato T, Yoshida E: A Case of
Lateral Medullary Infarction with Repeated
Respiratory Failure. Jpn J Neurotherapy 2001; 18:
297-300.
11. Terao S, Miura N, Osano Y, Noda A, Sobue G:
Rapidly progressive fatal respiratory failure
(Ondine's curse) in the lateral medullary syndrome. J
curse: case report. Arq Neuropsiquiatr 2004; 62:
323-327.
attack caused by unilateral lateral medullary
infarction and vertebral artery dissection. Jpn J
Takatsu M: A report of two cases with unilateral
lateral medullary infarction associated with central
15. Pedroso JL, Baiense RF, Scalzaretto AP, Neto PB,
Teixeira de Gois AF, Ferraz ME: Ondine's curse
after brainstem infarction. Neorul Inda 2009; 57:
206-207.
Unilateral medullary infarction with prolonged
central respiratory failure: a case report. Jpn J
17. Nagahata M, Abe Y, Ono S, Hosoya T, Uno S:
Surface appearance of the vertebrobasilar artery
revealed on basiparallel anatomic scanning (BPAS-
MR imaging: its role for brain MR examination. Am
18. Dyken ME, Somers VK, Yamada T, Ren ZY,
Zimmerman MB: Investigating the relationship
between stroke and obstructive sleep apnea. Stroke
Obstructive sleep apnea is a risk factor for death in
patients with stroke: a 10-year follow-up. Arch
Respir J 2003; 22. 3s-14s.

(Received, September 30, 2013)
(Accepted, October 18, 2013)