Multispectral Imaging of Pancreatic Mixed Acinar-neuroendocrine-ductal Carcinoma with Triple-immunoenzyme Staining

Hisashi Yoshimura¹,², Yoko Matsuda³, Akira Matsushita¹, Yoshiharu Nakamura⁴, Eiji Uchida⁴ and Toshiyuki Ishiwata²

¹Division of Physiological Pathology, Department of Applied Science, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University
²Department of Integrated Diagnostic Pathology, Graduate School of Medicine, Nippon Medical School
³Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology
⁴Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Nippon Medical School

Multiple immunoenzyme staining is a useful technique for visualizing the localization of multiple antigens using different chromogens on a tissue section. However, when the multiple antigens localize in the same cells, the mixed colors are indistinguishable to the human eye and color red-green-blue cameras. Multispectral imaging is a new technique that can solve this problem¹². Pancreatic mixed acinar-neuroendocrine-ductal carcinoma is an extremely rare neoplasm consisting of 3 cell components with acinar, neuroendocrine, and ductal differentiation (Fig. 1a)³. Figure 1b shows a pseudocolored composite image acquired from a specimen stained with trypsin (acinar marker, blue), synaptophysin (neuroendocrine marker, magenta), and cytokeratin 7 (ductal marker, brown) using a multispectral imaging system (Nuance, PerkinElmer Inc., Waltham, MA, USA). The system acquired the

---Photogravure---

Fig. 1

Multiple immunoenzyme staining is a useful technique for visualizing the localization of multiple antigens using different chromogens on a tissue section. However, when the multiple antigens localize in the same cells, the mixed colors are indistinguishable to the human eye and color red-green-blue cameras. Multispectral imaging is a new technique that can solve this problem¹². Pancreatic mixed acinar-neuroendocrine-ductal carcinoma is an extremely rare neoplasm consisting of 3 cell components with acinar, neuroendocrine, and ductal differentiation (Fig. 1a)³. Figure 1b shows a pseudocolored composite image acquired from a specimen stained with trypsin (acinar marker, blue), synaptophysin (neuroendocrine marker, magenta), and cytokeratin 7 (ductal marker, brown) using a multispectral imaging system (Nuance, PerkinElmer Inc., Waltham, MA, USA). The system acquired the
Multispectral Imaging of Mixed Carcinoma

Fig. 1 (a) Hematoxylin and eosin staining of pancreatic mixed acinar-neuroendocrine-ductal carcinoma. (b) Pseudocolored composite image (Nuance) acquired from triple-immunoenzyme staining with trypsin (mouse monoclonal antibody, MAB1482; Millipore, Temecula, CA, USA) in blue (BCIP), synaptophysin (rabbit polyclonal antibody; DAKO, Glostrup, Denmark) in magenta (new fuchsine), and cytokeratin 7 (mouse monoclonal antibody, clone OV-TL 12/30; DAKO) in brown (DAB). (c) The image in (b) was converted to a pseudofluorescent composite image with trypsin (magenta), synaptophysin (red), and cytokeratin 7 (green). (d) Composite image (upper left) and spectral unmixed images (upper right, trypsin; lower left, synaptophysin; lower right, cytokeratin 7). The spectral curves of the chromogens are shown in the top left corners of individual images. Scale bar=100 μm.

Fig. 2 Automated cellular segmentation using inForm software. Green indicates trypsin-positive cells, red synaptophysin-positive cells, yellow double-positive cells, and blue double-negative cells (total cell number: 2,493). Scale bar=100 μm.

References

E-mail: ishiwata@nms.ac.jp Journal Website (http://www.nms.ac.jp/jnms/)

J Nippon Med Sch 2015; 82 (3) 123