Review

SFRP1 Promoter Methylation and Renal Carcinoma Risk: A Systematic Review and Meta-Analysis

Shijie Mo, Zexuan Su, Baoli Heng, Weijun Chen, Liping Shi, Xinghua Du and Caiyong Lai

Department of Urology, The First Affiliated Hospital, Jinan University, Guangzhou, China

Background/Aim: Epigenetic inactivation of tumor suppressor genes is an important molecular mechanism in the formation and development of human tumors. The purpose of our study was to evaluate the correlation between the methylation level of the secreted frizzled-related protein 1 (SFRP1) gene and the risk of renal cell carcinoma (RCC).

Methods: The relevant literature was searched in detail in several electronic databases. The methodological heterogeneity was analyzed by meta-regression and subgroup analyses. The odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) were calculated to summarize the dichotomous outcomes of our meta-analysis.

Results: The ten included articles contained 535 RCC samples and 475 normal controls. The results demonstrated that the methylation level of the SFRP1 promoter region was significantly correlated with an increased incidence of RCC (OR=13.72; 95% CI: 6.01–31.28; P=0.000). Furthermore, the eligible studies that had sufficient clinical data about the RCC cases were included in the analysis, and the results indicated that the frequency of SFRP1 promoter methylation was associated with a higher histological grade (P=0.000), tumor stage (P=0.033), tumor size (≥5 cm; P=0.029), and distant metastasis (P=0.047).

Conclusion: Our results indicate that the methylation level of the SFRP1 promoter region is increased in patients with RCC compared to normal controls and might be involved in the occurrence and development of RCC. Additional well-designed studies are needed to further verify our conclusions.

(J Nippon Med Sch 2018; 85: 78–86)

Key words: SFRP1, promoter, methylation, renal cancer, meta-analysis

Introduction

Renal cell carcinoma (RCC) is a common lethal malignancy and accounts for more than 80% of kidney cancers. In the United States, there were approximately 62,700 new cases of kidney cancer and 14,240 deaths due to kidney cancer in 2016. The incidence of RCC has increased at a rate of 1.6% per year in the last 10 years, and this increase is attributable to the increasing use and development of medical imaging technology. RCCs are usually resistant to chemotherapy and radiotherapy, and once they progress to distant metastasis, the 5-year survival is less than 5%. However, 20%–30% of patients with RCC with new diagnoses had still developed distant metastasis because RCC in the early stages usually has no clinical symptoms that differentiate this condition from healthy people. Currently, surgical resection is still the main therapeutic treatment for RCC and has a good curative effect in cases of local RCC. It is necessary to identify effective biomarkers for the early surveillance and diagnosis of RCC.

The pathogenesis of RCC is complicated and has not yet been clarified. DNA methylation regulates gene expression without DNA sequence alteration and is a common form of epigenetic modification that plays an important role in the occurrence and development of tumors. The silencing of tumor suppressing factors is related to aberrant DNA hypermethylation in many tumors, including kidney tumors. Some common clinical
samples, such as urine, blood, and ascites samples, also exhibit aberrant gene methylation alterations in human carcinomas. Thus, the detection technologies revolving around DNA methylation contribute to identifying non-invasive and convenient biomarkers to improve the diagnostic efficiency in cancer.

Wnt genes are a family of secreted glycoproteins that regulate cell proliferation, differentiation, and apoptosis. Wnts are involved in the pathogenesis of RCC because they activate other signaling pathways, including the β-catenin and mTOR pathways. Secreted frizzled-related protein 1 (SFRP1) belongs to the frizzle protein family and is a negative regulator of the Wnt signaling pathway that serves as a tumor-suppressor gene. The loss of SFRP1 is related to DNA hypermethylation in many tumors, including RCCs. However, the results related to SFRP1 methylation in RCC are inconsistent. Thus, we performed a meta-analysis to assess the association between SFRP1 methylation and RCC risk and its roles in the clinical characteristics of tumors.

Literature Search Strategy

The relevant literature was searched in PubMed, the Cochrane Library, Google Scholar, and the Wanfang Database (China) before August 12, 2017. The key words were listed as follows: (renal OR kidney) AND (cancer OR carcinoma OR neoplasm) AND (methylation OR hypermethylation) AND (SFRP1 OR secreted frizzled-related protein 1). The following conditions were the inclusion criteria for our meta-analysis: (1) the articles were published in English and/or Chinese. (2) The eligible articles must have had detailed information about the SFRP1 methylation level in RCC cases and normal controls and the clinical characteristics of the RCC patients. (3) The RCC cases were diagnosed definitively by pathology.

Data Extraction

Two reviewers (S.M. and Z.S.) reviewed the related articles and carefully extracted the useful data. The following data were recorded: the name of the first author, year of publication, country, sample source, tumor histology, detection method, case number, SFRP1 methylation level, normal control source, and clinical features (including gender, age, tumor size, tumor stage, histology grade, and distant metastasis). The specimens of the normal controls were derived from healthy people or RCC-adjacent normal tissues. The articles that detected the methylation levels of the SFRP1 gene in both the tissue and serum groups were regarded as two separate articles. The tumor stage (T3–4) was regarded as high-stage or low-stage. The histological grade (G3–4) was classified as high-grade or low-grade.

Quality Assessment

To examine the quality of each included article, three reviewers (S.M., B.H., and W.C.) read the latest manual of the Newcastle-Ottawa Scale (NOS) carefully and assessed each study independently with uniform standards. Quality assessment was based on selection, comparability, and exposure. In NOS assessment, one star represented one point, and the range of the score in each group was from zero to nine. The articles that had six points or higher were included in our meta-analysis.

Statistical Analysis

The statistical results were examined in the form of pooled ORs and their corresponding 95% CIs. The Cochrane’s Q test and Higgins I² statistic were used to examine the methodological heterogeneity. When the P value and I² statistic indicated obvious heterogeneity in our meta-analysis (P<0.05 or I²>50%), a random-effects model (DerSimonian-Laird method) was chosen to calculate the pooled results. Otherwise, a fixed-effects model (the Mantel-Haenszel method) was selected. The potential heterogeneity was analyzed by meta-regression and subgroup analysis. Furthermore, sensitivity analysis was used to assess the stability of our results. Publication bias was assessed with funnel plots and Egger’s tests. All statistical data were analyzed with STATA 12.0 software (Stata Corporation, TX, USA). P<0.05 represented the level for statistical significance.

Results

Study Filtration

The flow diagram of the filtration process for obtaining eligible articles is presented in Figure 1. A total of 645 articles were preliminarily confirmed based on searches in four electronic databases. Via examination of the titles and abstracts, 248 repetitive articles were excluded. Then, after a detailed reading of the full texts of the remaining articles, 121 irrelevant articles were excluded. Sixty-five articles were removed because they focused on cell and/or animal trials or lacked relevant methylation data. Finally, 101 articles met our criteria and the average score of the NOS assessment for each included article was approximately 8 (Table S1). The characteristics of the included studies are presented in Table 1.

Study Heterogeneity

Obvious heterogeneity existed in our meta-analysis (I²=65.5%), so we used meta-regression and subgroup analysis to search for the sources of the methodological hetero-
geneity. As demonstrated in Table 2, meta-regression could not identify any common source of heterogeneity (the P value for the method was 0.387 and the P value for the region was 0.577), but parts of the heterogeneity were derived from the detection method, control source, and region based on the subgroup analysis (Table 3).

The Association of SFRP1 Promoter Methylation with RCCs and Normal Controls

Eleven studies involving 535 RCC cases and 475 normal controls and were included in our meta-analysis. As presented in Figure 2, the results revealed that the frequency of SFRP1 promoter methylation was significantly higher in the RCC cases than in the normal controls (OR = 13.72; 95% CI: 6.01–31.28; P=0.000). Furthermore, the subgroup analysis indicated that the OR of the Caucasian subgroup (OR=13.74) was nearly equal to that of the Asian subgroup (OR=14.50).

The Correlations of SFRP1 Promoter Methylation in RCC with the Clinical Features

The clinical information of the RCC cases is listed in Table 4 and includes tumor stage, histology grade, tumor size, distant metastasis, age, and gender. The results indicated that the methylation level of the SFRP1 promoter region in RCC was correlated with a higher stage (OR=2.90, P=0.033), higher grade (OR=10.36, P=0.000), the tumor size (OR=2.82, P=0.029) and distant metastasis (OR=3.67, P=0.047). However, there were no associations with age (P=0.281) or gender (P=0.625).

Sensitivity Analyses

Sensitivity analysis was used to examine whether our results were stable. The pooled ORs presented in Figure 3 did not change, which indicated that the results of our meta-analysis were stable.

Publication Bias

As presented in Figure 4, the shape of the funnel plot was symmetrical, which meant that there was no obvious publication bias in our meta-analysis. This result was also confirmed by an Egger’s test (P=0.063).

Discussion

RCC is a common lethal carcinoma that accounts for nearly 3% of all adult malignancies worldwide. The pathogenesis of RCC is immensely complex. DNA methylation is one of the important pathogenetic mechanisms.
SFRP1 Methylation and Renal Cancer Risk

Table 1 Characteristics of the included studies

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Region</th>
<th>Sample type</th>
<th>Method</th>
<th>Histology</th>
<th>Tumor M+</th>
<th>Tumor Total</th>
<th>Control M+</th>
<th>Control Total</th>
<th>Control source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urakami</td>
<td>2006</td>
<td>America</td>
<td>tissue</td>
<td>MSP</td>
<td>RCCs</td>
<td>29</td>
<td>62</td>
<td>5</td>
<td>62</td>
<td>A</td>
</tr>
<tr>
<td>Urakami</td>
<td>2006</td>
<td>America</td>
<td>serum</td>
<td>MSP</td>
<td>RCCs</td>
<td>9</td>
<td>33</td>
<td>0</td>
<td>20</td>
<td>H</td>
</tr>
<tr>
<td>Dahl</td>
<td>2007</td>
<td>Germany</td>
<td>tissue</td>
<td>MSP</td>
<td>RCCs</td>
<td>26</td>
<td>38</td>
<td>0</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Michelle</td>
<td>2007</td>
<td>America</td>
<td>tissue</td>
<td>MSP</td>
<td>ccRCC</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td>10</td>
<td>A</td>
</tr>
<tr>
<td>Awakura</td>
<td>2008</td>
<td>Japan</td>
<td>tissue</td>
<td>MSP</td>
<td>RCCs</td>
<td>28</td>
<td>65</td>
<td>2</td>
<td>22</td>
<td>A</td>
</tr>
<tr>
<td>Dalgin</td>
<td>2008</td>
<td>America</td>
<td>tissue</td>
<td>MS</td>
<td>ccRCC</td>
<td>34</td>
<td>38</td>
<td>4</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Morris</td>
<td>2010</td>
<td>England</td>
<td>tissue</td>
<td>MSP</td>
<td>RCCs</td>
<td>20</td>
<td>58</td>
<td>0</td>
<td>20</td>
<td>A</td>
</tr>
<tr>
<td>Costa</td>
<td>2010</td>
<td>Portugal</td>
<td>tissue</td>
<td>QMSP</td>
<td>ccRCC</td>
<td>5</td>
<td>31</td>
<td>1</td>
<td>5</td>
<td>H</td>
</tr>
<tr>
<td>Zhang</td>
<td>2011</td>
<td>China</td>
<td>tissue</td>
<td>MSP</td>
<td>ccRCC</td>
<td>51</td>
<td>66</td>
<td>9</td>
<td>30</td>
<td>A</td>
</tr>
<tr>
<td>Cheng</td>
<td>2011</td>
<td>China</td>
<td>tissue</td>
<td>MSP</td>
<td>RCCs</td>
<td>30</td>
<td>38</td>
<td>2</td>
<td>38</td>
<td>A</td>
</tr>
<tr>
<td>Atschekezai</td>
<td>2012</td>
<td>Germany</td>
<td>tissue</td>
<td>Pyrosequencing</td>
<td>RCCs</td>
<td>15</td>
<td>96</td>
<td>10</td>
<td>192</td>
<td>H</td>
</tr>
</tbody>
</table>

Abbreviations: RCCs: renal cell carcinoma that is unclassified; ccRCC: clear cell renal cell carcinoma; M+: methylation; MSP: methylation-specific polymerase chain reaction; QMSP: quantitative methylation-specific polymerase chain reaction; MS: mass spectrometry; A: autologous (control specimens from the same patients); H: heterogeneous (control specimens from other individuals)

Table 2 Meta-regression of secreted frizzled-related protein 1 (SFRP1) promoter methylation in renal cancer

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficient</th>
<th>95% Confidence interval</th>
<th>P-residual</th>
<th>Adjusted R²</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>–2.33</td>
<td>(–4.91, 0.21)</td>
<td>73.60%</td>
<td>30.20%</td>
<td>0.068</td>
</tr>
<tr>
<td>Control type</td>
<td>−0.49</td>
<td>(–3.44, 2.50)</td>
<td>82.03%</td>
<td>–15.11%</td>
<td>0.729</td>
</tr>
<tr>
<td>Ethnicity</td>
<td>–0.28</td>
<td>(–3.20, –2.66)</td>
<td>82.26%</td>
<td>–14.93%</td>
<td>0.841</td>
</tr>
</tbody>
</table>

P-residual: residual variation due to heterogeneity; Adjusted R²: proportion of between-study variance

Table 3 Subgroup analyses of secreted frizzled-related protein 1 (SFRP1) promoter methylation in renal cell cancer (RCC) samples

<table>
<thead>
<tr>
<th>Variables</th>
<th>Studies</th>
<th>Tumor</th>
<th>Control</th>
<th>Pooled effect</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M U</td>
<td>M U</td>
<td>OR (95%)</td>
<td>Z P</td>
<td>P (%) P</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>255</td>
<td>280</td>
<td>34 441</td>
<td>13.72 (6.01–31.28)</td>
</tr>
<tr>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSP</td>
<td>8</td>
<td>201</td>
<td>169</td>
<td>19 221</td>
<td>15.85 (7.83–32.11)</td>
</tr>
<tr>
<td>Non-MSP</td>
<td>3</td>
<td>54</td>
<td>111</td>
<td>15 220</td>
<td>6.35 (0.59–68.77)</td>
</tr>
<tr>
<td>Control type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autologous</td>
<td>8</td>
<td>226</td>
<td>149</td>
<td>23 235</td>
<td>21.49 (9.61–48.07)</td>
</tr>
<tr>
<td>Heterogeneous</td>
<td></td>
<td>3</td>
<td>29</td>
<td>131 206</td>
<td>3.15 (1.00–9.92)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>8</td>
<td>146</td>
<td>220</td>
<td>21 364</td>
<td>13.74 (4.37–43.21)</td>
</tr>
<tr>
<td>Asian</td>
<td>3</td>
<td>109</td>
<td>60</td>
<td>13 73</td>
<td>14.50 (3.99–52.75)</td>
</tr>
</tbody>
</table>

M: methylation; U: non-methylation

in neoplasia and the progression of RCC. SFRP1 is regarded as a tumor suppressor gene, and the silencing of the SFRP1 gene is associated with aberrant DNA methylation in a number of human cancers, including breast, colorectal, ovarian, lung, bladder, hepatocellular, gastric, and renal cancers, which means that SFRP1 promoter hypermethylation might be involved in the neoplasia of human tumors.

However, there were inconsistent results among the evaluated studies regarding the relationship between the methylation level of the SFRP1 gene and the incidence of RCC. In our meta-analysis, 11 case-control studies, consisting of 535 RCC cases and 475 normal controls, were included in the analysis. The results indicated that SFRP1
Pooled OR from 11 studies including 535 RCC cases and 475 normal controls. OR=13.72; 95% CI: 6.01–31.28; P=0.000.

Table 4 The association of secreted frizzled-related protein 1 (SFRP1) promoter methylation with clinical features of patients with renal cancer

<table>
<thead>
<tr>
<th>Parameters</th>
<th>No.</th>
<th>Case/control type</th>
<th>Controls M+/T</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>Heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F (%)</td>
</tr>
<tr>
<td>Age</td>
<td>4</td>
<td>≥60Y/<60Y</td>
<td>62/116</td>
<td>34/70</td>
<td>2.25 (0.52–9.83)</td>
<td>0.281</td>
</tr>
<tr>
<td>Gender</td>
<td>4</td>
<td>male/female</td>
<td>71/131</td>
<td>25/52</td>
<td>1.25 (0.51–3.03)</td>
<td>0.625</td>
</tr>
<tr>
<td>Histology grade</td>
<td>3</td>
<td>G3–4/G1–2</td>
<td>19/25</td>
<td>26/95</td>
<td>10.36 (3.46–31.00)</td>
<td>0.000</td>
</tr>
<tr>
<td>Tumor stage</td>
<td>5</td>
<td>T3–4/T1–2</td>
<td>48/105</td>
<td>63/177</td>
<td>2.90 (1.09–7.75)</td>
<td>0.033</td>
</tr>
<tr>
<td>Size</td>
<td>3</td>
<td>≥5 cm/<5 cm</td>
<td>37/82</td>
<td>8/38</td>
<td>2.82 (1.11–7.14)</td>
<td>0.029</td>
</tr>
<tr>
<td>Distant metastasis</td>
<td>4</td>
<td>Yes/No</td>
<td>18/39</td>
<td>42/177</td>
<td>3.67 (1.01–13.23)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

M+: positive for SFRP1 methylation; T: total patients

Promoter hypermethylation was highly correlated with an increased risk of RCC (OR=13.72, P=0.000). However, obvious heterogeneity existed in our meta-analysis (I²=65.5%). Through subgroup analysis, the method of methylation detection was able to explain part of the heterogeneity (the I² for methylation-specific polymerase chain reaction (MSP) was 27.4%; the I² for non-MSP was 87.4%) as different detection technology had its own standard to estimate the methylation. Quantitative detection methods including quantitative methylation-specific polymerase chain reaction (QMSP), mass spectrometry (MS) and pyrosequencing are usually more sensitive and specific than conventional MSP⁴. For example, Paola Parrella et al.⁴ observed that the methylation rate detected by MSP was 35.7% (10/28 cases) in normal brain tissue, however, only 2 out of 28 cases (7.1%) were positive when detected by QMSP. Besides methodological heterogeneity, part of the heterogeneity was derived from different subtypes of RCC, lack of systemic treatment, and an exact definition of outcome as Sophie C Joosten et al. discussed⁴⁹.

The results of the included studies detected only with the method of MSP had no obvious heterogeneity (27.4%) and revealed that the frequency of SFRP1 methylation was also highly associated with the RCC risk (OR=15.85, P=0.000). Hypermethylation of the promoter CpG island of the SFRP1 gene has also been detected in RCC cell
lines and is associated with decreased mRNA and protein expressions of the SFRP1 gene, and 5-aza-2'-deoxycytidine treatment results in the restoration of SFRP1 expression and the inhibition of RCC cell growth\(^{14,16,18}\), which indicates that SFRP1 promoter hypermethylation might be an early event in RCC tumorigenesis.

Several previous studies have reported that the methylation level of the SFRP1 promoter region is not associated with age or gender in several human cancers including cholangiocarcinomas\(^{50}\), acute myeloblastic leukemia (AML)\(^{51}\), colorectal\(^{35}\), breast\(^{29}\) and gastric cancers\(^{52}\). In our meta-analysis, 4 studies were included in the analysis of the results and indicated that there were no associations between SFRP1 promoter methylation and age (\(P=0.281\)) or sex (\(P=0.625\)) in the RCC samples.

Shinji Urakami et al.\(^{14}\) reported that the hypermethylation status of the SFRP1 gene was obvious in high-grade or metastatic RCCs. However, E Dahl et al.\(^{15}\) reported that there are no correlations between SFRP1 promoter methylation and the available clinicopathological data (i.e., tumor stage and histological grade and type) in RCC samples. The results of our meta-analysis revealed that the frequency of SFRP1 promoter methylation was associated with a higher histological grade (\(P=0.000\)), tumor stage (\(P=0.033\)), tumor size (\(\geq 5\) cm; \(P=0.029\)) and distant metastasis (\(P=0.047\)), which means that SFRP1 promoter methylation might be involved in the development of RCC.

A few potential limitations to our study are listed as
follows. First, selection bias was inevitable because the articles were searched for only in the English and Chinese literature, and thus, we might have missed some important studies published in other languages. Second, the included articles were published several years ago (2006 to 2012), and newly published studies would have been better for inclusion in our analysis. Finally, the heterogeneity of our studies was clear ($I^2=65.5\%$).

In conclusion, our study indicated that SFRP1 promoter hypermethylation is closely associated with a high risk of RCC. More well-designed research with sufficient sample sizes may clearly confirm the role of SFRP1 promoter methylation in RCC.

Acknowledgment: The research was supported by the Region Fund of the National Natural Science Foundation of China (No. 81460386).

Conflict of Interest: The authors declare that they have no conflict of interest.

References

(Received, October 24, 2017)
(Accepted, January 15, 2018)