SHORT NOTE

Derivation of Finite Medium Age-Diffusion Kernels in Source-Sink Theory

R.A. BHATTI and O.J. HAHN

Department of Mechanical Engineering, University of Kentucky*

Received July 23, 1976
Revised November 29, 1976

KEYWORDS: source-sink theory, age-diffusion equation, line sources, finite medium, slowing-down kernels, neutron slowing-down theory, moderators

HERESY-III(1) code is based on the source-sink theory originally developed by Feinberg (2) and Galanin(3). Their approach consisted of solving the age-diffusion equation in an infinite moderator containing an arbitrary arrangement of line elements. HERESY-III code was developed for D2O moderated systems, but the interactions between rods were specified by infinite medium age-diffusion kernels. As the heavy water moderated reactors are of finite dimension, it was necessary to develop age-diffusion kernels for finite medium. This note describes the derivation of age-diffusion kernels for finite medium, for line source of zero dimension and for a finite dimension line source.

1. Finite Medium Slowing Down Kernel

Consider a unit line source of neutrons placed eccentrically at a point r_n in a medium of radius R. In this case, Fermi-age equation for a unit line source can be written as(4):

$$ F^2 q(r, T) - \frac{\partial q(r, T)}{\partial T} = \delta(r - r_n), \quad (T > 0), $$

where $q(r, T)$ is the number of neutrons slowing down past age T per unit time per unit volume and $\delta(r - r_n)$ is Dirac delta function.

For an infinite medium, the solution of Eq. (1) for a unit line source becomes:

$$ q(r_n \rightarrow r, T) = \frac{e^{-\rho s/r}}{4\pi T}, $$

(This is the equation for the slowing down kernel used in HERESY-III code) where

$$ \rho s = r_n^2 + r^2 - 2rr_n \cos(\theta - \theta_n). $$

Figure 1 shows the co-ordinate representation.

Fig. 1 Co-ordinates of source rod and recipient rod

For finite medium, we assume that $q(r, T)$ is sum of solutions given by

$$ q(r, \theta, T) = u(r, \theta, T) + w(r, \theta, T), $$

where $u(r, \theta, T)$ is a regular solution and given by Eq. (2), and $w(r, \theta, T)$ an irregular solution and given by the solution of the differential equation (omitting vector notation for convenience):

$$ \frac{\partial^2 w(r, \theta, T)}{\partial r^2} + \frac{1}{r} \frac{\partial w(r, \theta, T)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 w(r, \theta, T)}{\partial \theta^2} = \frac{\partial w(r, \theta, T)}{\partial T}. $$

The boundary conditions are

$$ w(r, \theta, T) = 0 \quad \text{when} \quad T = 0, \quad 0 \leq r \leq R, \quad (6) $$

$$ w(R, \theta, T) = -u(R, \theta, T), \quad T > 0. \quad (7) $$

Taking Laplace transform of Eq. (5), we obtain

$$ \frac{\partial^2 \tilde{w}(r, \theta, s)}{\partial r^2} + \frac{1}{r} \frac{\partial \tilde{w}(r, \theta, s)}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \tilde{w}(r, \theta, s)}{\partial \theta^2} - \frac{s}{r} \tilde{w}(r, \theta, s) = 0, $$

where

$$ \tilde{w}(r, \theta, s) = \int_0^\infty w(r, \theta, T) e^{-sT} dT. $$

* Lexington, Kentucky, U.S.A.
Taking Laplace transform of Eq. (7), we obtain
\[w(r, \theta, s) = \int_0^\infty \! u(r, \theta, T) e^{-sT} dT \]
or
\[w(r, \theta, s) = -\frac{K_0(\sqrt{s} \rho)}{2\pi}, \quad \text{for } r=R, \quad (10) \]
where we have used Eq. (2) for \(u(r, \theta, T) \) and \(K_0 \) modified Bessel function of second kind of zero order.

The solution of Eq. (8) can be written as
\[w(r, \theta, s) = \sum_{m=-\infty}^{+\infty} C_m I_m(\sqrt{s} r) \cos m(\theta - \theta_n), \quad (11) \]
where we have restricted the irregular solution to a symmetric function only, that is to one which depends only on the distance from the centre of the medium. \(C_m \) is a constant and \(I_m \) a modified Bessel function of first kind of order \(m \).

Using Eq. (10) which is second boundary condition, we obtain
\[C_m = -\frac{1}{2\pi} \frac{I_m(\sqrt{s} R) K_m(\sqrt{s} R)}{I_m(\sqrt{s} R)}, \quad (12) \]
where we have used
\[K_0(\sqrt{s} \rho) = \sum_{m=-\infty}^{+\infty} K_0(\sqrt{s} r) I_m(\sqrt{s} r) \cos m \theta, \quad \text{for } r > r_n, \quad (13) \]
\[= \sum_{m=-\infty}^{+\infty} I_m(\sqrt{s} r) K_0(\sqrt{s} r) \cos m \theta, \quad \text{for } r < r_n, \quad (14) \]
\[\int_0^{\frac{\pi}{2}} \cos m(\theta - \theta_n) \cos m'(\theta - \theta_n) d\theta = \pi, \quad \text{for } m=m', \]
\[= 0, \quad \text{for } m \neq m'. \quad (15) \]

The solution of Eq. (1) becomes, for \(r < r_n \),
\[q(r, \theta) = \frac{1}{2\pi} \sum_{m=-\infty}^{+\infty} \frac{K_m(\sqrt{s} R) I_m(\sqrt{s} R)}{I_m(\sqrt{s} R)} \]
\[\cdot I_m(\sqrt{s} r) \cos m(\theta - \theta_n). \quad (16) \]
and for \(r > r_n \),
\[q(r, \theta) = \frac{1}{2\pi} \sum_{m=-\infty}^{+\infty} I_m(\sqrt{s} r) K_0(\sqrt{s} r) \cos m(\theta - \theta_n). \]

The inverse Laplace transform of Eq. (16) gives for \(r < r_n \),
\[q(r_n \to r, \theta, T) = \frac{1}{\pi R^2} \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} e^{-\alpha_m r_n} J_m(c_n r) J_m(c_n r) \frac{I_m(\alpha_m r)}{I_m(\alpha_m R)} \]
\[\cdot \cos m(\theta - \theta_n), \quad (18) \]
where \(\alpha_{mn} \) are zero's of \(J_m(\alpha_m R)=0 \).

For \(r > r_n \), Eq. (18) is symmetric in both \(r \) and \(r_n \) and hence is also solution for \(r > r_n \).

2. Finite Medium Diffusion Kernel

The diffusion equation for thermal neutron flux due to unit line source is given by
\[-D \frac{\partial^2 \phi(r, \theta)}{\partial r^2} + \Sigma_a \phi(r, \theta) = \delta(r-r_n), \quad (19) \]
where \(D \) and \(\Sigma_a \) are diffusion coefficient and macroscopic absorption cross section for thermal neutrons, respectively.

For infinite medium, solution of Eq. (19) is given by
\[\phi(r_n \to r, \theta) = A_0 K_0(\frac{r}{L}), \quad (20) \]
(This is the diffusion kernel used in HERESY-III code) where \(A_0 \) is constant and \(L \) the diffusion length for thermal neutrons.

For finite medium, the solution of Eq. (19) becomes
\[\phi(r_n \to r, \theta) = A_0 K_0(\frac{r}{L}) \]
\[+ \sum_{m=-\infty}^{+\infty} C_m I_m(\frac{r}{L}) \cos m(\theta - \theta_n). \quad (21) \]

Boundary conditions are
\[\phi(r_n \to R, \theta) = 0, \quad (22) \]
\[-D \int_0^{\infty} \frac{\partial \phi}{\partial r} \rho d\theta = 1, \quad (23) \]
where \(\frac{\partial \phi}{\partial r} \) is evaluated for \(\rho = 0 \) for a line source of zero dimension and for \(\rho = a \) for a line source of finite dimension where \(a \) is the radius of the rod.

In order to apply boundary condition (i), Eq. (21) is written as (omitting vector notation for convenience)
\[\phi(r_n \to r, \theta) = A_0 \sum_{m=0}^{\infty} K_m \left(\frac{r_n}{L} \right) I_m \left(\frac{r_n}{L} \right) \cos \nu \theta_n, \]

where we have used the relation given by Eq. (13). Making use of Eq. (22), this gives

\[\frac{C_m}{A_0} = \frac{I_m \left(\frac{r_n}{L} \right) K_m \left(\frac{R}{L} \right)}{I_m \left(\frac{R}{L} \right)}. \]

The solution of Eq. (19) for a finite medium becomes

\[\phi(r_n \to r, \theta) = A_n K_0 \left(\frac{r}{L} \right) \]

\[- \sum_{m=0}^{\infty} C_m \sum_{\nu=-\infty}^{\infty} (-1)^\nu \cdot I_{\nu+m} \left(\frac{r_n}{L} \right) I_\nu \left(\frac{r}{L} \right) \cos \nu \theta_n. \]

The only constant to be determined is \(A_0 \) which for a line source of zero dimension has the value

\[A_0 = \frac{1}{2\pi D}, \]

and for a line source of radius \(a \),

\[\frac{1}{A_0} = 2\pi a \sum_a \left[K_1 (a/L) \right. \]

\[- \sum_{m=0}^{\infty} \frac{I_m (r_n/L) K_m (R/L)}{I_m (R/L)} \cdot I_1 (a/L) \right]. \]

The solution of Eq. (19) for a finite medium becomes

\[\phi(r_n \to r, \theta) = A_n K_0 \left(\frac{r}{L} \right) \]

\[- A_0 \sum_{m=0}^{\infty} \frac{I_m (r_n/L) K_m (R/L)}{I_m (R/L)} \cdot I_1 (a/L) \cos m(\theta - \theta_n). \]

References