Praseodymium-143 from Neutron-Irradiated Uranium

Tomitaro ISHIMORI* and Yoshii KOBAYASHI*

Received January 13, 1965

From neutron-irradiated uranium cooled for about 2 days, 143Pr was separated indirectly by solvent extraction. After removing uranium and some extractable nuclides with bis(2-ethyl hexyl) orthophosphoric acid from 10 M nitric acid solution, 143Ce was extracted with bis(2-ethyl hexyl) orthophosphoric acid (n-heptane diluent) from a 10 M nitric acid solution containing potassium bromate. Then, 143Pr was purified after most of the 143Ce had decayed off. Detailed measurements indicated a half-life of 13.55 ±0.02 days and maximum β-ray energy of 0.93 ±0.05 MeV.

Ordinarily 143Pr is prepared from neutron-irradiated cerium target by solvent extraction, precipitation or ion exchange. 143Pr also exists in the fission products of uranium as the daughter of 143Ce ($t_{1/2}$=33 hr).

Peppard, et al.(1) reported the isolation of 143Pr from neutron-irradiated cerium and of 144Pr from a 144Ce-144Pr mixture. The method is based upon the characteristic that Ce(IV) is preferentially extracted into bis(2-ethyl hexyl) orthophosphoric acid from 10 M HNO$_3$ and 1 M KBrO$_3$ solutions, while the distribution ratio of Pr is as low as about 10^{-3}. McCown, et al.(2) applied this method to the separation of 144Ce from neutron-irradiated uranium cooled for about 90 days.

In this paper, the authors applied the same method to the isolation of 143Pr from neutron-irradiated uranium, according to the following procedure: Cerium containing 143Ce is separated from neutron-irradiated uranium, and the cerium fraction is stored until most of the 143Ce decays into its daughter, 143Pr. Then the 143Pr produced is separated from the cerium fraction which, besides 143Pr, contains 141Ce and 144Ce-144Pr. The maximum β-ray energy and the half-life of the 143Pr thus separated is examined in detail.

EXPERIMENTAL

Uranium dioxide irradiated in JRR-1 for 5 hr with a neutron flux of about 5×10^{12}n/cm2/sec and cooled for about 2 days was dissolved in 10 M HNO$_3$ solution. After first eliminating uranium and neptunium as well as some extractable nuclides with HDEHP (toluene diluent), 143Ce was separated from the fission products solution and purified with other cerium nuclides by Peppard’s procedure. The desired nuclide, 143Pr, was isolated from the cerium fraction after about 5 days standing, during which most of 143Ce decayed off. 143Pr thus obtained was further purified by TBP solvent extraction(3). The aliquots of the 143Pr solution were evaporated either on a platinum disc or on a thin Myler film to determine their half-life and β-ray energy. The β activity was measured by a gas-flow end-window proportional counter, and the β-ray spectrum was obtained on a scintillation spectrometer with 1.5" x 0.5" anthracene crystal.

RESULTS

The maximum β-ray energy was determined by the Kurie plot presented in Fig. 1, which gave the value of 0.93±0.05 MeV. No γ-rays were detected from the sample. The decay curve presented in Fig. 2 was followed for about 10 half-lives but did not deviate from a straight line, and the half-life thus determined was 13.55±0.02 days. Since there was no evidence of any contamination from other fission products, it was thus proved that the Peppard’s procedure can be successfully applied to the separation of 143Pr from fission products, and the new half-life value (average value of three measurements) is very reli-

* Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken.
able for ^{143}Pr. The values obtained in this study are summarized in Table 1 together with reference values appearing in literature.

Table 1 Values Half-life and β-energy of ^{143}Pr

<table>
<thead>
<tr>
<th>Half-life (day)</th>
<th>β-energy (MeV)</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.55±0.02</td>
<td>0.93 ±0.05</td>
<td>Fission product</td>
<td>Present study</td>
</tr>
<tr>
<td>13.5 ±0.1</td>
<td>0.83</td>
<td>$^{144}\text{Ce}(d,n)^{143}\text{Pr}$</td>
<td>(4)</td>
</tr>
<tr>
<td>13.7 ±0.1</td>
<td>0.932±0.002</td>
<td>Oak Ridge Source</td>
<td>(5)</td>
</tr>
<tr>
<td>13.8</td>
<td>1.0</td>
<td>Fission product</td>
<td>(6)</td>
</tr>
<tr>
<td>13.76±0.05</td>
<td>0.920±0.010</td>
<td>$^{144}\text{Ce}(n,\gamma)^{144}\text{Ce}-^{143}\text{Pr}$</td>
<td>(7)</td>
</tr>
<tr>
<td>13.95</td>
<td>0.93 ±0.01</td>
<td>Fission product</td>
<td>(8)</td>
</tr>
<tr>
<td>13.59±0.04</td>
<td>—</td>
<td>$^{144}\text{Ce}(n,\gamma)^{144}\text{Ce}-^{143}\text{Pr}$</td>
<td>(9)</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENT

Acknowledgement of the authors is due to Dr. T. Kuroyanagi, who measured the β-spectrum and to Prof. Dr. W. Seelmann-Eggebert of the Kernforschungszentrum Karlsruhe where the half-life was calculated on the Center’s IBM 7070 using a program devised by Dr. H. Münzel’s.

REFERENCES