Effect of Beta-Carotene Supplementation on the Peripheral Blood Leukocyte Population in Japanese Black Calves

Konosuke Otomaru, Rei Ogawa, Shoko Oishi, Yuki Iwamoto, Shingo Ishikawa and Katsuhisa Nagai

Materials and Methods

Animals. We used 22 Japanese Black calves kept at one farm in Kagoshima Prefecture, Japan. All samples were collected from December 2017 to April 2018. All the calves stayed with their mothers for 3 d after birth and were housed indoors. Starting at 4 d after birth, they were fed with milk replacer and were raised individually in calf hutchs, and all calves were weaned at 11 wk of age. The amount and nutrients composition of feed are shown in Table 1.

Beta-carotene administration. The calves were randomly assigned to two groups. Eleven calves (average weight ± standard deviation: 47.2 ± 7.1 kg) were orally supplemented with 20 mg of beta-carotene (Rovimix beta-carotene, DSM Nutrition Products, Basal, Switzerland) (The dose was based on the previous studies (11–13)) once daily from 2 to 8 wk of age (BC group), and 11 calves (48.4 ± 6.9 kg) were not supplemented with beta-carotene (control group). All calves were managed in the same manner and fed to meet their nutritional requirements according to the Japanese beef cattle feeding standard (14). Peripheral blood samples were collected from all calves at 2, 4, 8 and 12 wk of age via the jugular vein using plain Vacutainer tubes and Vacutainer tubes containing dipotassium ethylenediamine tetraacetic acid (EDTA-2AK). Serum was separated from blood samples collected in plain tubes by centrifugation and stored at −30°C until analysis. Blood collected in tubes containing EDTA-2AK was used for white blood cell (WBC) analysis within 4 h after collection. All calves were weighed at start of the experiment (2 wk of age) and at 42 d after experiment (8 wk of age). No calves developed disease during the study period. The calves were raised according to guidelines of animal care of the Joint Faculty of Veterinary Medicine at Kagoshima University. The protocol was reviewed and approved by the Kagoshima University Laboratory Animal Committee, Japan (study number: VM17019).

Beta-carotene, retinol and white blood cell analysis. The serum beta-carotene was measured using a Labospect 7020 autoanalyzer (Hitachi High-Technologies Corporation, Tokyo, Japan). The serum retinol concentration was measured using a high performance liquid chro-
matography (Prominence, Shimazu, Kyoto, Japan) as previously reported (15). The total WBCs were determined with a blood cell counter. Peripheral blood mononuclear cells (PBMCs) and granulocytes in WBCs were analyzed by WBC cytogram, and then the numbers of PBMCs and granulocytes were calculated using their percentages and total WBCs counts. The peripheral blood leukocyte population was assessed using a FACScan flow cytometer (Becton, Dickinson and Company, Mountain View, CA, USA) as previously reported (3). The primary antibodies used and a description of the working solutions are listed in Table 2.

Table 2. Primary antibodies used to identify peripheral blood leukocytes.

<table>
<thead>
<tr>
<th>Angitgen</th>
<th>MAb clone</th>
<th>Isotype</th>
<th>Specificity</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>MM1A</td>
<td>IgG1</td>
<td>Pan T cell</td>
<td>WSUMAC</td>
</tr>
<tr>
<td>CD4</td>
<td>CACT138A</td>
<td>IgG1</td>
<td>Helper T cell</td>
<td>WSUMAC</td>
</tr>
<tr>
<td>CD8</td>
<td>BAQ111A</td>
<td>IgM</td>
<td>Cytotoxic T cell</td>
<td>WSUMAC</td>
</tr>
<tr>
<td>CD14</td>
<td>CAM66A</td>
<td>IgM</td>
<td>Monocyte</td>
<td>WSUMAC</td>
</tr>
<tr>
<td>CD21</td>
<td>GB25A</td>
<td>IgG1</td>
<td>B cell</td>
<td>WSUMAC</td>
</tr>
<tr>
<td>CD335</td>
<td>AKS1</td>
<td>IgG1</td>
<td>Natural killer cell</td>
<td>BIO-RAD</td>
</tr>
</tbody>
</table>

WSUMAC: WSUMAC, WA, USA. BIO-RAD: BIO-RAD, CA, USA.

The results of the present study suggested that the increase in the serum beta-carotene concentration caused by oral supplementation in the Japanese Black calves changed the numbers of immune component cells in the peripheral blood. The higher population of CD4-positive cells by oral beta-carotene supplementation in this study was in agreement with other studies in human (7, 8).

Regarding daily oral supplementation of beta-carotene to calves, increased blood beta-carotene level was reported with 20 mg/d by Bierer et al. (11) and Poor et al. (12), and with 6–96 mg/d/50 kg body weight by Hoppe et al. (13). Therefore, in this study, calves were supplemented daily with 20 mg beta-carotene.

As a result, in the present study, the serum retinol concentration in both groups gradually increased and showed similar patterns from 2 to 12 wk of age. However, the serum beta-carotene concentration in the BC group was significantly higher than that in the control group at 4, 8 and 12 wk of age (p<0.05).

The results of the present study suggested that the increase in the serum beta-carotene concentration caused by oral supplementation in the Japanese Black calves changed the numbers of immune component cells in the peripheral blood. The higher population of CD4-positive cells by oral beta-carotene supplementation in this study was in agreement with other studies in human (7, 8).

Regarding daily oral supplementation of beta-carotene to calves, increased blood beta-carotene level was reported with 20 mg/d by Bierer et al. (11) and Poor et al. (12), and with 6–96 mg/d/50 kg body weight by Hoppe et al. (13). Therefore, in this study, calves were supplemented daily with 20 mg beta-carotene.

As a result, in the present study, the serum retinol concentration in both groups gradually increased and showed similar patterns from 2 to 12 wk of age. However, the serum beta-carotene concentration in the BC group was significantly higher than that in the control group at 4, 8 and 12 wk of age. These results indicate that supplemental 20 mg/d of beta-carotene in Japanese Black calves is effective in increasing serum beta-carotene concentration with minor influence on serum retinol concentration. Previous researches have also shown that supplementation of beta-carotene to calves did not cause major influences on blood retinol concentration (16, 17).

Most CD4-positive cells are helper T cells, which appear to be necessary for regulation of the immune response and play a critical role in the overall immunological competence of the host (18). It has been reported that increased oxidative stress in peripheral blood decreased T cell proliferation (19). In addition, oxidative stress promoted apoptosis of CD4-positive cells (20), and decrease in the number of CD4-positive cells in peripheral blood suppressed cell-mediated as well as humoral immunity (21, 22). In human studies, oral beta-carot-
Effect of Beta-Carotene Supplementation in Japanese Black Calves

Beta-carotene supplementation reduced oxidative stress in peripheral blood (5, 6), and stimulated proliferation of lymphocytes (7, 8). Decrease in serum beta-carotene concentration was associated with the development of respiratory and digestive diseases (23). We previously reported that the supplementation of Japanese Black calves with beta-carotene could increase the serum antioxidative stress and decreased the serum oxidative stress (24). Therefore, increase in the number of CD4-positive cells in the BC group compared with the control group in the present study might have been associated with decreased oxidative stress in blood and/or increased the serum beta-carotene concentration. The number of T and B cells in the peripheral blood of young calves has been reported to increase with their growth (1, 3, 25). In particular, it has been reported that the number of CD4-positive cells increased up to 9–12 wk of age (I, 3). In the present study, although the beta-carotene concentration in the BC group was significantly higher than those in the control group at 4, 8, and 12 wk of age, significant difference in the number of CD4-positive cells in the BC group was observed only at 4 wk of age. Natural increase in the number of CD4-positive cells associated with growth might have made the differences between groups obscure at 8 and 12 wk of age. Otomaru et al. (26, 27) reported that vitamin E supplementation to calves increased the number of CD4-positive cells in peripheral blood and enhanced antibody response to vaccination. Therefore, increased number of CD4-positive cells in the peripheral blood in the present study might have enhanced the immunity in calves.

These results confirmed that oral beta-carotene supplementation of Japanese Black calves increased blood beta-carotene concentration, ameliorated the numbers of immune cells in the peripheral blood. In order to enhance health condition in calves, further research is needed to clarify whether beta-carotene supplementation improve the peripheral blood leukocyte function in Japanese Black calves.
Table 3. Changes in the number of leukocyte subsets by age.

<table>
<thead>
<tr>
<th>Cell type</th>
<th>Control group BC group</th>
<th>Control group</th>
<th>BC group</th>
<th>Control group</th>
<th>BC group</th>
<th>Control group</th>
<th>BC group</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC (×10^3/μL)</td>
<td>8.5 ± 1.2</td>
<td>8.2 ± 1.2</td>
<td>8.5 ± 1.2</td>
<td>8.2 ± 1.2</td>
<td>8.5 ± 1.2</td>
<td>8.2 ± 1.2</td>
<td>8.5 ± 1.2</td>
</tr>
<tr>
<td>PMN (×10^3/μL)</td>
<td>4.2 ± 0.8</td>
</tr>
<tr>
<td>CD3+ (×10^3/μL)</td>
<td>8.2 ± 1.8</td>
</tr>
<tr>
<td>CD4+ (×10^3/μL)</td>
<td>4.2 ± 0.8</td>
</tr>
<tr>
<td>CD8+ (×10^3/μL)</td>
<td>3.5 ± 2.4</td>
</tr>
<tr>
<td>CD14+ (×10^3/μL)</td>
<td>2.6 ± 0.9</td>
</tr>
<tr>
<td>CD35+ (×10^3/μL)</td>
<td>1.2 ± 0.6</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SD. Asterisk indicates a significant difference between two groups at the same age (p<0.05).

Authorship
Research conception and design: KO and YI; experiments: KO, RO, SO, YI, SI and KN; statistical analysis of the data: KO, RO and YU; interpretation of the data: KO and RO; writing of the manuscript: KO.

Disclosure of state of COI
No conflicts of interest.

Funding
This research received no external funding.

REFERENCES

Effect of Beta-Carotene Supplementation in Japanese Black Calves

