Rapid Communication

A Case of Occupational Bronchial Asthma and Contact Dermatitis Caused by ortho-Phthalaldehyde Exposure in a Medical Worker

Hiroshi Fujita1, Masanori Ogawa2 and Yoko Endo2

1Department of Transfusion Medicine, Tokyo Metropolitan Bokutoh Hospital and 2Clinical Research Center for Occupational Poisoning, Tokyo Rosai Hospital, Japan Labour, Health, and Welfare Organization, Japan

Key words: ortho-Phthalaldehyde, Endoscopy disinfection, Bronchial asthma, Contact dermatitis

Ortho-phthalaldehyde (OPA) has been considered a powerful disinfectant for medical devices because it is more effective against glutaraldehyde (GA)-resistant mycobacteria, less irritating and faster-acting than GA, and does not require an activation step1–4). Since many nurses have developed dermatitis and bronchial asthma as a result of GA exposure5, 6) , the use of OPA as an alternative to GA is increasing. Although the lowest published lethal dose (LD50) of OPA is reported to be 7 mg/kg in the mouse7), few safety tests on OPA have been performed.

There have been reports of chemical burn8) and anaphylaxis9, 10) in patients which were caused by OPA. However, a company producing it advertises that OPA is much safer than GA for workers because its vapor pressure is lower and solutions of it are thinner than those of GA.

In this report, we describe the first case of occupational bronchial asthma and contact dermatitis thought to be caused by OPA exposure in an endoscopy unit, and we also report the OPA concentrations measured in the air at the patient’s workplace.

Case

A 57-yr-old female had been employed as a nurse in an endoscopy unit at our hospital from April 2000. She had handled 2.5% GA solution for disinfection of endoscopes using auto-washers and a bucket for soaking. She exhibited no respiratory or cutaneous symptoms while handling GA.

In March 2003, use of 0.55% OPA solution in place of GA began at our hospital. Subsequently, the patient exhibited slight dyspnea and dry cough in December 2003. On January 6, 2004, she had a checkup at a respiratory outpatient department because her dyspnea had worsened and she was experiencing shortness of breath. Although chest X-ray revealed no abnormal findings, there was wheezing bilaterally in the lung fields. The results of laboratory examinations are shown in Table 1. No eosinophilia or increase in non-specific IgE was noted. All other laboratory findings were within normal limits. The patient had no past history of bronchial asthma. She was clinically diagnosed with bronchial asthma and prescribed β2-stimulant tapes (Tulobuterol) and steroid inhalers (Budesonide), which improved her respiratory symptoms. However, episodic attacks of asthma occurred repeatedly once or twice per month during work in the endoscopy unit, as shown in Fig. 1.

In April 2004, serous papules and urticaria were found disseminated on both lower extremities of the patient. These rashes were diagnosed as contact dermatitis by a dermatologist.

The patient was transferred to the emergency room from the endoscopy unit on May 1, 2004. After the change of workplace, she experienced no further episodes of asthma or dermatitis. Her asthma and dermatitis thus appear to have been caused by OPA exposure.

Measurements of Work Environment

We measured the OPA concentrations in the air of the endoscopic sterilization room at the hospital in November 2004. Active air sampling was performed at 1.0 l/min for 30 min using a 2,4-dinitrophenylhydrazine-silica cartridge (LpDNPH S10, Spelco, Bellefonte, PA, USA). The hydrazone derivative of OPA was eluted with acetonitrile and analyzed with a high performance liquid chromatograph (HP1100, Ailent, USA) with a UV detector (UV-VIS, Ailent, USA)11). The results are shown in Fig. 2.

Discussion

There are reports that insufficient washing of endoscopes has had severe effects including chemical burn8) and anaphylaxis9, 10). However, cases of occupational respiratory disease and dermatitis caused by OPA exposure have not been previously described in the literature.

While our patient was handling GA, she was asymptomatic. Although measurements of her work environment were not performed during that period, GA concentration in the air may have been higher than that of OPA, as suggested by previous reports5, 12, 13). In addition, the method of sterilization using OPA was the same as that using GA, and only gloves were used for protection.

The diagnosis of occupational asthma should include
Table 1. Results of clinical laboratory examinations at the first episode of asthma

<table>
<thead>
<tr>
<th></th>
<th>Hematology (reference value)</th>
<th>Biochemistry (reference value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBC (×10^4/µL)</td>
<td>404 (357–497)</td>
<td>CRP 0.30 mg/mL (0.00–0.30)</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>13.2 (11.4–14.2)</td>
<td>AST 22 IU/L (10–37)</td>
</tr>
<tr>
<td>Hct (%)</td>
<td>38.3% (32.3–42.1)</td>
<td>ALT 27 IU/L (10–37)</td>
</tr>
<tr>
<td>Platelets (×10^4/µL)</td>
<td>37.1 (13–35)</td>
<td>TP 7.8 g/dL (6.0–8.3)</td>
</tr>
<tr>
<td>WBC (×10^4/µL)</td>
<td>8,300 (3,500–9,500)</td>
<td>BUN 15 mg/dL (7–20)</td>
</tr>
<tr>
<td>(Seg, Lym, Mo, Eo, Baso)</td>
<td>52.8, 33.2, 7.1, 5.7, 1.2</td>
<td>Cr 0.5 mg/dL (0.4–0.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Non-specific IgE 88 IU/mL (<250)</td>
</tr>
</tbody>
</table>

Fig. 1. Clinical course of the patient.

Fig. 2. A sketch of the endoscopy unit and OPA concentrations in air. □: Sampling point and concentration of OPA (ppb).
both the diagnosis of asthma and the establishment of work-relatedness14. Based on the definition of a surveillance case, diagnosis of occupational asthma requires A) diagnosis of asthma, B) onset of asthma after entering the workplace, C) association between symptoms of asthma and work, and D) one or more of the following criteria: 1) workplace exposure to an agent known to give rise to occupational asthma; 2) work-related changes in FEV\textsubscript{1} or peak expiratory flow (PEF) rate; 3) work-related changes in bronchial responsiveness; 4) positive response to specific inhalation challenge tests; and 5) onset of asthma with a clear association with a symptomatic exposure to an irritant agent in the workplace14.

In this case, although the pulmonary function test was not performed, we diagnosed the patient’s respiratory symptoms as bronchial asthma. Chest X-ray revealed no abnormal findings, and laboratory examination yielded no findings of inflammation. Therefore, diagnosis of her respiratory symptoms as those of other diseases such as chronic obstructive pulmonary disease (e.g. emphysema), cardiac dysfunction or bronchitis, which can also cause wheezing, dyspnea and shortness of breath, would not have been reasonable. Moreover, her symptoms improved under treatment with steroid inhalers and \(\beta_{2} \)-stimulant tapes. Steroids are used as controller medications for bronchial asthma, while \(\beta_{2} \)-stimulants function as supportive treatment15. We therefore diagnosed her respiratory symptoms as bronchial asthma based on the results of the laboratory examination, check-up findings and the effects of treatment. The patient had no history of bronchial asthma before the use of OPA, and her asthma corresponded to OPA exposure with a latency period of 9 months. Moreover, as shown in Fig. 1, her symptoms nearly disappeared after she was free from OPA exposure. These findings suggest a strong relationship between her symptoms and her workplace environment. Since there has been a report of chemical burn in a patient exposed to OPA8, OPA can be considered an irritant. Thus of the criteria14 noted above, the present case meets A), B), C), and D)–5). We therefore believe that this patient’s asthma was occupational asthma caused by OPA exposure. The inhalation challenge test would be useful for confirming whether the patient’s asthma were caused by OPA, but we did not perform it since we considered the risks greater than the potential benefits to this patient. It is reported that even if inhalation challenge tests are considered the gold standard, they are not common practice and should not be considered for routine diagnostic tests16. Moreover, inhalation challenge tests have seldom been performed outside of a few specialized centers in Canada and Europe17.

According to the ACCP (American College of Chest Physicians)18, asthma in the workplace is classified as (1) occupational asthma or asthma caused by exposure to specific agents in the workplace, or (2) work-aggravated asthma or concurrent asthma worsened by workplace exposure. Moreover, two types of occupational asthma are distinguished by whether they appear after a latency period. Immunological occupational asthma is characterized by a latency period prior to the onset of asthma16. Anaphylaxis caused by OPA is strongly suggested to be due to an immunological mechanism, since skin prick tests for OPA were positive in all patients18 and a histamine release test using basophils from a patient was positive19. OPA may thus cause asthma by an immunological mechanism, although eosinophilia and increase in non-specific IgE were not observed in the present case. Mapp et al.16 mentioned that low molecular weight agents cause occupational asthma that has the clinical and pathologic features of immunologic asthma, but does not consistently induce IgE antibody.

Alternatively, one report states that evidence for an immunological mechanism is still lacking or may not exist for some agents causing occupational asthma with a latency period14.

Serous papules and urticaria were found disseminated on both lower extremities. We concluded that this eczema was contact dermatitis caused by OPA because of the cutaneous findings, the diagnosis by a dermatologist, and the relationship between the period of onset of this eczema and the use of OPA. It is known that the patch test is very helpful in the diagnosis of allergic contact dermatitis10, though it was rejected by the patient.

Since GA exposure is a major cause of occupational asthma, according to the HSE in the UK19, GA exposure is now strictly regulated in Europe. In Japan, the Ministry of Health, Labour and Welfare in February 2005 recommended that GA exposure be kept below 0.05 ppm in sterilization units20. Many hospitals in Japan have subsequently come to use OPA in place of GA10 despite the fact that little is known concerning the risks to employees of exposure to OPA6, 13.

Marena et al.12 compared air levels of GA and OPA in several endoscopy units in their hospital, and reported that the mean OPA level was 8.4 \(\mu \)g/m3 (1.53 ppb), with a range of 6.38–11.01 \(\mu \)g/m3 (1.16–2.00 ppb). These OPA levels were nearly equal to those we measured. Despite the fact that concentration of OPA in the air was quite low, at only a few ppb, bronchial asthma and contact dermatitis occurred in our patient.

This case indicates that OPA itself can be a powerful sensitizer, suggesting that widespread use of OPA as a substitute for GA may result in serious health risks for workers.

Acknowledgments: This study is part of the research and development project on the 13 fields of occupational injuries and illness of the Japan Labour, Health, and Welfare Organization.
References

