論文

学術論文数の国際比較調査—医学領域の分析

International comparison of the number of scientific papers in medicine

YAMAZAKI Shigeaki

[著者抄録] 医学領域の研究活動をとらえるために、EMBASEを用いて1976年から1994年に発表された文献を、主要7か国、7分野に分類した。世界の論文生産において日本は米英につき第3位であり、論文数と分野別のシェアでも持続的な増加を示していた。日本は生化学・遺伝学、癌、神経学などの今日的なトピックスではイギリスを押さえているが、他の臨床医学や基礎医学などではイギリスより多くの論文を生産していた。ロシアは世界的論文生産面での影響力を減らしておらず、もはや研究大国の力を失っている。1995年の科学技術基本法の成立により、日本の研究活動はより活性化されるだろう。学術論文数の分析や研究助成の優先分野について、さらに討議する必要がある。

[著者付与キーワード] 学術論文、EMBASE、国際比較、計量書誌学、研究活動、研究助成

[Author Abstract] The purpose of this article is to study the present state of research activities in the field of medicine. The number of papers in seven developed countries are surveyed using EMBASE, during the period of 1976-1994, and the papers are also classified by the 7 sub-fields of medicine. It is interesting to note that Japan has become the third largest country in terms of the output of medicine, and Japan has continued to increase its number and share in the all sub-fields of medicine. Though Japan has larger share of world publications in the sub-field of biochemistry and genetics, cancer, and neurology than UK, the UK presence in the sub-field of clinical medicine and basic medicine are more larger output than Japan. Now Russia looses its influence on the share of world publication and can no longer afford to live like a scientific superpower. On the basis of establishing the Basic Law of Science and Technology in 1995, Japan's scientific research will become more active. In order to develop the research performance in Japan, the analysis of research output and the priority setting in research funding have to be discussed.

[Keywords by Author] scientific papers, EMBASE, international comparison, bibliometrics, research performance, research funding

* 東京慈恵会医科大学医学情報センター（〒105 港区西新橋3-25-8）Tel. 03(3433)1111
Medical Information Center for Education & Research, Jikei University School of Medicine (25-8, Nishishinbashi 3-chome, Minato-ku, 105)

— 391 —
1. はじめに

研究活動を定量的な視点からとらえるために、これまでの質的または量的評価が行われてきたデータベースが形成される以前は、Priceに代表されるように世界的な雑誌目録であるWorld List of Scientific Periodicalsなどを用いて、世界の学術雑誌数の量的変化が示された。また、1963年のGottschalk & Desmondによる調査では、各国の雑誌目録により国別分布が調査され、1967年のBarrの調査では、イギリスのNational Lending Libraryの現行受入雑誌目録により、世界の学術雑誌数のセンサスが示された。その後、文献データベースの出現とともに、それまでの雑誌数にかわり、論文数や引用などを対象にして、研究活動の現状をより反映した調査が行われようになった。最近の医学分野における論文生産数を対象にした調査例としては、EMBASEの1990年版を対象にしたBenzerらの論文がある。この調査論文は研究者間の関心を引き、国別論文数を各国の医師数で割って比較したうえで、各国の科学研究費を用いて分析された。

日本においても、1987年に多くの医学的データベースを対象にした論文数調査が実施され、この結果は根本により発表された。今回の調査は、INSPEC（理工学）、COMPENDEX（工学）、CA（化学）、EMBASE（医学）などのデータベースをもとに、年ごとの発表論文数を筆頭著者国別の調査を行った。1987年に行われた前回の調査を引き継いだならばその変化は予測したような統計をもとにしたものである。これらの結果から、自然科学領域における主な国の論文生産状況を知り、研究活動やその動向を分析することができる。今回の学術論文数の国際比較調査に基づいて、根岸[1]が調査結果の全体像とその特性についてまとめ、石井[2]が多元元尺度構成法によって国別分野別の論文数の年次変化の特性を分析している。この2論文を受けて、第3報にあたるこの報告では、EMBASEのデータを中心に医学領域の分析を試みたものである。また、研究資金の動向や日本からの海外研究への発表傾向の変化などのデータも加えながら、医学領域の論文生産の状況と問題点を検討している。

1995年には科学技術基本法が成立し、日本は科学技術創造的発展の道路を選択した。先進諸国の方が、現在日本だけの研究を前提とした科学研究費の大幅な増額を含んでいる。今回の調査は、論文数とそのシェアの変化というシンプルなデータを示しているが、研究活動の動向をとらえる基礎的な指標となっている。今後日本の重点を置くべき研究領域の選定と研究資金の適切な投入を決定していくためにも、国際的な科学文献データベースを用いた論文生産数調査の分析は有効なものになるだろう。

2. EMBASEの分野区分

科学文献を代表的な主脈に分類するために、現43に分けられているEMCLASを用いて、下記の表に集約した。EMCLASには、クラスの分類と合体などの変更が存在するが、調査結果に影響しないようにリンクを付けて検索を行っている。

生化学・遺伝学（Clinical and Experimental Biochemistry；Developmental Biology and Teratology；Human Genetics）、癌（Cancer）

注）この調査は、平成8年度文部省科学研究費補助金による総合研究「文献検索・引用索引データベースの統計処理に基づく学術研究活動の国際比較に関する研究」の一環として、下記の研究組織により行われたものである。研究代表者：根岸正光、研究分担者：宮澤敏夫、大西恒太、松村社、西澤正己（学術情報センター）、石井啓義（図書館情報学科）、小澤宏（東京大学）、中崎茂明（東京慈恵会医科大学）、調査協力者：藤川俊三（学術情報センター）、小林内正明（エクゼビジョン・ジャパン）、鈴木統、原修（化学情報協会）、白石一哉、井戸隆英、飯塚由希子（情報図書館RUKIT）
神経学 (Neurology and Neurosurgery)，心臓病学 (Cardiovascular Diseases and Cardiovascular Surgery)，薬学 (Clinical and Experimental Pharmacology；Adverse Reactions Titles；Drug Dependance, Alcohol Abuse and Alcoholism, Toxicology)，臨床医学 (Internal Medicine；Pediatrics and Pediatric Surgery；Surgery；Obstetrics and Gynecology；Otorhinolaryngology；Ophthalmology；Dermatology and Venerology；Radiology；Chest Diseases, Thoracic Surgery and Tuberculosis；Rehabilitation and Physical Medicine；Gerontology and Geriatrics；Nuclear Medicine；Anesthesiology；Hematology；Urology and Nephrology；Arthritis and Rheumatism；Psychiatry；Orthopedic Surgery；Gastroenterology；Epilepsy)，基礎医学 (Anatomy, Anthropology, Embryology and Histology；Physiology；Endocrinology；Microbiology, Bacteriology, Mycology, Parasitology and Virology；General Pathology and Pathological Anatomy；Public Health, Social Medicine and Epidemiology；Immunology, Serology and Transplantation；Biophysics, Bioengineering and Medical Instrumentation；Occupational Health and Industrial Medicine；Health Policy, Economics and Management；Environmental Health and Pollution Control；Forensic Science)

3. 最も特徴的な主要国の大変化：CA からみた日本、アメリカ、ロシアの変化

医学領域における論文数変化を示す前に、世界最大の抄録索引データベースである CA から、日本とアメリカ、そしてロシアの変化を見ておきたい (図 1)。これは、1976年から1993年の18年間を対象にした今回の調査で見いだされた最も主要な調査結果であり、この傾向は EMBASE を含むすべてのデータベースに共通するものであった。

データベースとしての CA は、各国の協力によるレコードの入力など、国際的な共同作業で作成されており、調査国の違いによるバイアスがもっとも少ないと考えられる。このように国別の論文生産数データをもとに、量的変動を長期のスパンで見ていくと、各国の研究活動の変化を理解することができる。

今回の調査における最大の特色は、ロシアの論文生産数の増減が顕著であった点である。1976年にアメリカとクロスしきか、そして1990年には日本にも生産数が達された。ソ連邦の崩壊は1991年末であり、論文生産数から現れても、ロシアの科学研究体制が破壊された様子が示されていた。研究者の海外への大規模な流出が起きており、1992年には4500名の科学者がアメリカ、フランス、ドイツなどへ移っていた。

EMBASE での、日本、ロシア、アメリカの変化を見ても、アメリカの優位とロシアの下降という同様の現象が示されている (図 2)。ロシアはもはや学術研究大国として生き残っていくことは困難ではないだろう。

4. 日本、イギリス、フランス、ドイツを中心にした医学論文数の変化

論文生産の超大国であるアメリカと、大きく崩れていたロシアの変化を除した上で、日本、イギリス、ドイツ、フランスの先進国4か国を中心にしてみた。

4. 1 EMBASE の全体からみた変動

医学領域の研究活動を、論文生産数から見たとき、どのような特徴が見いだされるであろうか。まず、EMBASE 全体の図を示した (図 3)。

日本は4か国の中で1976年に4位であったが、1978年にフランスを抜き、1984年にはドイツを抜き2位へと急上昇していた。イギリスは、1976年に2位でスタートしたが、1983年にそれまで1位であったドイツを抜き、その後日本と1位、2位を競いあいながら上昇してきた。この日本とイギ
図1 CAからみた日本、アメリカ、ロシアの論文数変化 (1975-1994)

図2 EMBASEからみた日本、アメリカ、ロシアの論文数変化 (1976-1994)
リスの伸びと比較して、ドイツとフランスの上昇が鈍いことがわかる。CAデータベースをもとにした化学領域における調査結果とは異なった現象が見られ、つまり、ドイツは化学領域ではイギリスを押さえていたが、医学領域では逆にイギリスがドイツよりも活発な論文生産を示していた。

ドイツは1990年に東西ドイツ統一を果たしたが、経済的な困難さに直面しており、研究活動にかける努力が示されるようである。

なお、1986年と1987年に国際が存在しているが、この理由は、EMBASEのキーワードであるMalimートの改訂作業の影響で全体の収録作業が停滞したことが原因である。

つきに、専門分野から論文数の変化を主要な4か国で検討する。

4.2 専門分野からみた日本、イギリス、フランス、ドイツの変化

現在の医学研究の中心的なトピックである生化学・遺伝学領域の変化を見ると、論文数の成長が、他分野と比較して急激であり、特に日本とイギリスの上昇が顕著である（図4）。日本のランキングについては、1976年に4か国の中で3位であったが1988年以降1位を維持している。イギリスはランクを落としながらも上昇傾向にあり、分子生物学やバイオテクノロジーへの研究投資の強化を反映している。ドイツとフランスは並行しており、分子生物学領域では、日本とイギリス2国との差が大きい。

癌領域の特色は、日本の成長がその他の3国よりも高いことであり（図5）、ときに、1980年代からの上昇が顕著である。神経学は、1976年には4か国の中で4位であったが、1980年代に入り上昇している（図6）。1989年のExcerpta MedicaのCD-ROMを対象にした、日本からの論文発表の多い誌のトピックはBrain Research誌がいっぱいおり、神経学領域での活発さを反映している10。薬学領域においても、日本はイギリスを押さえていいる。心臓病学分野では、1970年代に2位であったフランス、1980年代に、日本、イギリス、ドイツの3国に離れ4位に低迷した。

その他の専門領域は、臨床医学系（図7）と基礎医学系（図8）に分けて示した。主なトピック別の分析とは異なり、イギリスが日本を押さえていた。日本とイギリスの競争に注目すると、興味深い結果が明らかである。基礎医学領域では、分子生物学などの多くの研究者の関心分野では、日本がイギリスを押さえており、臨床医学でも、神経学、心臓病学、癌などでは日本がイギリスより多くの論文を生産している。しかし、これらのトピックを除した基礎医学全体や臨床医学全体では、イギリスの方が多くの論文を生産していた。つまり、流行分野では、日本がイギリスを押さえているが、その他の意味でではイギリスがまとまっていった。特に、基礎医学では1990年代になり、イギリスは着実な上昇を示していた。イギリスでは政府研究資金の伸びが無いかで、Wellcome財団などの私財による援助がこの上昇を支えていると考えられる11。

5. 先進7か国の分野別のシェア比較

調査対象にした7か国について、1976年から1994年までのシェア変化を、医学全体と7分野別に示した。アメリカ合衆国については、百分比の値を5で割って図示していることに注意してもらいたい。すべての領域でアメリカのシェアは抜きとんでおり、7か国をまとめて示すためのものである。なお、本調査は1995年10月時点での調査であり、データベースへの収載までのタイムラグを考えると、1993年までの結果を利用するのが妥当であるが、参考までに1994年までの結果を示した。

5.1 医学全体のシェア変化

日本、イギリス、カナダがシェアを上昇させていているが、ドイツ、フランス、ロシアはシェアを減らしている（図9）。ロシアは、1980年代からすでに大きく下落しており、1991年のソビエト連邦の崩壊という政治経済的な大変動以前に、研究体制において資金を含め多くの困難な問題に直面していた様子

--- 395 ---
図3 主要4か国の論文数変化（EMBASE全体）

図4 生化学・遺伝学における主要4か国の論文数変化
図5 癌分野における主要4か国の論文数変化

図6 神経学における主要4か国の論文数変化
図7 臨床医学における主要4か国の論文数変化

図8 基礎医学における主要4か国の論文数変化
が示されている。そして、1900年代に入り、さらにシェアを急激に下げており、政治経済面の混乱の影響を大きく受けた現象である。

ドイツも、1909年に東西ドイツ統一を果たしたものの、1985年にシェアを大きく落として、1990年代にはさらに下げていった。1976年には、世界第2位のシェアを保っていたが、1985年には日本とイギリスに抜かれている。統一後の、経済的な困難さを反映しているといえるが、それ以前にすでにシェアの減少が起きていたことも注意すべきであろう。フランスは下降傾向を止め、1985年以後には微増に転じている。

このフランスにとっては、科学研究費を減少して、産業をもち上げるべきテーマを定め、産業と学术研究機関との協力、研究機関相互の協力体制を強化することで予算の効果的な運用を目指しているといえる。今後、フランスの医学論文生産に占めるシェアは大きく増大するとは考えられない。1992年のNature誌によると、ドイツの科学研究費は国民総生産の2.9パーセントに達しており、これ以上のシェア増は考えられておらず、基礎研究面で物理学から生物学へ中心を移すことが決定された。生命科学研究を重視する方向に転換しつつあり、今後は医学領域の論文生産に影響が予想される。こうしてみると、イギリスの著しいシェア増大傾向と、日本の急激なシェアの上昇、特に1990年代のシェアアップが注目される。

5.3 癌
医学領域において、先進国の死亡原因の上位を占めており、癌は重要な研究テーマになっている。日本の癌領域における活発な論文生産とその上昇が顕著である（図11）。1976年において、ドイツのシェアが高かったが、日本、イギリス、フランスなどの主要国間に大きな差異は存在しなかった。しかし、1985年以後、日本における発表シェアは急速な上昇を示した。なぜ、なぜ、日英の専門分野において、このシェア領域ではアメリカの下降が最も目についた。アフリカは1980年代のシェア変化の落ち込みは大きなものである。日本の癌領域へのシェア上昇は、他分野と比較して突出した印象を持つ。

5.4 神経学
脳研究に代表されるように、神経学は神経科学として大きく発展しようとしている分野である。日本とイギリスが上昇傾向があり、ドイツやフランスは、逆に下降傾向である（図12）。1980年代以後、日本、イギリス、ドイツ、フランスの4か国のなかでは、日本の申し上げ、世界第2位の位置を占めている。日本において、脳研究の長期にわたる研究資金の投入が決定されており、今後さらにシェアを伸ばすと予想される分野である。カナダは、神経学のシェアにおいて、他の領域と比較して高い比率を示していた。なお、アメリカは、1985年をピークに、神経学だけでなくすべての領域において、シェアを下げていることに注意すべきであろう。

5.5 心臓病学
心臓病学は、日本よりも欧米で先行した代表的な研究領域のひとつであろう。日本と欧米における疾病構造の違いも反映されている。しかし、1980年代になり、日本のシェアは大きく上昇していた（図13）。イギリスは、1990年代になり特に顯著な上昇を示している。ドイツとフランスは、下降しておりシェアを大きく下げている。1976年と1981年を見ると、ドイツは心臓病学において他の3国
図9 医学全体の7か国の論文数シェア変化

図10 生化学・遺伝学の7か国の論文数シェア変化
図11 情報学の7か国の論文数シェア変化

図12 神経学の7か国の論文数シェア変化
を押さえ1位を占めていただけに、現在でも8パーセント前後のシェアを占めながらも、日本とイギリスに抜かれていました。

5.6 薬学
薬学領域の特色は、日本以外の6か国が、そのシェアを下げるかあるいは値動きはみられず、日本だけがシェアを上げる傾向にある点である（図14）。イギリスは、ほとんどの領域においてシェアを押さえているが、薬学領域においてはシェアを下げる傾向にあった。薬学研究は、創薬活動から、動物実験、臨床試験を経て、さらに薬剤の副作用や評価を含む内容をカバーし、巨額な資金を投入する分野である。研究開発の効率化のため、近年製薬企業の併合などが進行している。日本は、イギリスやドイツを押さえ、世界第2位のシェアを占めている。

5.7 臨床医学と基礎医学
いくつかの重要な専門領域において結果を見てきたが、ここではその他の臨床医学領域をまとめた（図15）。日本とイギリスの上昇とドイツとフランスの下降という現象が見られ、カナダの横ばいとロシアの急激な落ち込みなど、共通する現象がみられる。しかし、臨床医学領域では、イギリスは日本を押さえ2位の位置を占めており、心臓病、神経学などの多くの研究者が関心を寄せている分野で日本が高いシェアを示していることがわかる。

その他の基礎医学領域でも（図16）、イギリスは日本を押さえており、その差は臨床医学よりも大きいことに注意すべきである。医学領域において、日本とイギリスを比較すると、イギリスは基礎医学研究や、熱帯医学に代表されるような感染症学などの臨床分野にも力を入れており、イギリスの医学研究の特徴が示されている。

6. 日本の科学研究費と発表数の変化
日本の1993年度の科学研究関係予算は民間と政府機関を合わせ13兆7千億円になり、そのうち78.3パーセントが民間企業による研究費と推定されている。文部省の科学研究費補助金は、政府関係研究費の一部ではないが、科学研究費を考えるうえでの重要な指標になる。1995年には1千億円の大台に近づき、これは10年間でほぼ倍増したことになる（図17）。先進国の中で、このような急激な上昇を示しているのみで日本のだけである。1995年には、科学技术基本法が成立し、日本は科学技術創造立国への方向を見据えた。懸念研究への巨額な研究投資も決まった。科学研究費の増額にかかわる実行され、日本政府の研究費は上昇させていくことになるであろう。

論文発表数の変化だけでなく、日本の医学文献の発表傾向に変化があるかどうかを調査するために、MEDLINEデータベースに占める日本の論文の発表数変化を調査してみた（図18）。もちろん、MEDLINEに基づいた論文数だけで、日本における医学論文の発表数はみるとみることはありであり、国際の医学文献二次資料誌である医学中央雑誌をもとに推定しても、年間13万件前後の論文が発表されている。しかし、英文論文の発表という視点から見ると、海外誌への発表数が増加している点は興味深い。つまり、1989年からMEDLINEに占める日本からの海外誌への発表論文数が、明らかに増加している点である。MEDLINEへの日本のからの収載数に大きな変化はないことから、近年日本の研究者が積極的に海外誌へ発表している様子が示されている。優れた研究活動は、質の高い成果を海外の学術誌へ発表させることにつながるだけに、この海外誌への増加は注目に値する。

7. まとめ
EMBASEを除いて、その他のデータベースですべてがアメリカに次いで2位を占めていた。世界で出版されている医学領域の論文数をEMBASEをもとにし、筆頭著者の所属先住所から発表論文の国別分布をみると、日本のアメリカとイギリスについて3位にランクされており、
図17 文部省科学研究費の変化（1985-1995）

図18 Medlineデータベースから見た日本論文の発表誌別変化（1988-1994）
ドイツやフランスを押さえ、活発な論文生産がな
きていた。EMBASEは国内で刊行されている
多くの日本語論文をカバーしていないことを考え
ると、よく欧米から主張される基礎科学だけのり
論や情報発信の少なさといった批判は、論文生産
数の視点からは否定される。

ロシアは、1991年のソ連邦の崩壊を契機に、大
きく論文生産を落としており、ロシア科学の低落
が顕著に示されていた。また、シェア変動を注意
してみると、すでに1980年代からロシア(ソ連)の
論文発表活動に顕著な減少が予兆として見い出さ
れていた。ドイツは1990年代に東西ドイツ統一を果
たしたが、経済的な困難さに直面しており、科学研究
活動にかげりが見られた。日本とイギリスの
ランクに注目すると、研究者の関心の高い先進分
野では、イギリスが押さえられて、地味
な領域ではイギリスが著しく、さらにシェア分析からみると、イギリスと日本の研究姿勢の
違いが示されており、日本の研究体制や方針を考えるうえで参考になる。

謝辞 本研究は平成7、8年度文部省科学研究費
補助金による総合研究「文献抄録・引用索引デー
タベースの統計処理に基づく学術研究活動の国際
比較に関する研究」によるものであり、研究代表
者の根岸正光先生のご指導と、共同研究者の方々
との討論、そして調査データの集計を担当された
情報図書館 RUKIT の方々のご尽力に深く感謝
いたします。

参考文献

1）King, J. A review of bibliometric and other
 science indicators and their role in research
 13, 261-276 (1987)
2）Price, D.J.de S. 島尾康男訳 リトルサイエ
 ヌス・ビッグサイエンス, 科学の科学・科学情
 報, 大阪, 新晃社, 1970
3）Gottschalk, C.M. & Desmond, W.F. World
census of scientific and technical serials.
American Documentation. 14, 188-194 (1963)
4）Barr, K.P. Estimates of the number of
currently available scientific and technical
periodicals. Journal of Documentation. 23,
110-116 (1967)
5）Benzer, A., Pomaroli, A., Hauffe, H.,
 Schmutzhard, E. Geographical analysis of
 medical publication in 1990. Lancet. 341,
15) Yamazaki, S. Research activities in life sciences in Japan. Scientometrics. 29(2)
 181–190 (1994)
16) Aldhous, P. Wellcome Trust: Britain’s big biomedical spender. Science. 256,
 1132–1133 (1992)
17) Balter, M. French biomedicine: a $51 million incentive to cooperate. Science. 267,
 1589 (1995)
18) Butler, D. French biomedical research ‘needs more coordination’. Nature. 379,
 667 (1996)
20) Swinbanks, D. Japanese centre set to boost efforts in brain research. Nature. 370,
 243 (1994)