A database for micrographs of metals under creep loading —Techniques for display of micrographs using WWW browser—

NAGAHASHI Kazuhiro, IJIMA Kunio, AOYAGI Katsuhiro,
MURATA Masaharu, TANAKA Hideo

[Author Abstract] JST is developing a database for micrographs of metals under creep loading in collaboration with National Research Institute for Metals (NRIM). NRIM has been examining long-term creep tests of many kinds of metals including stainless steels and accumulating both testing data and micrographs of their specimens. This web-based database contains these typical micrographs and their testing data, with the functions to display micrographs in 2 aspects: 1) overlay of scale and direction of stress, 2) zoom-in/zoom-out. Moreover, it can show analysis graphs, and can also be linked with another database in order to refer related information.

[Keywords by Author] metal, creep, micrograph, image database, WWW, Java

※1 科学技術振興事業団研究基盤情報部（〒102-0081 千代田区四番町5-3）Tel. 03(5214)8472
JST (5-3, Yonbancho, Chiyoda-ku, Tokyo, 102-0081)
※2 新日本製鐵㈱エレクトロニクス・情報通信事業部（〒151-8527 渋谷区代々木3-25-3）Tel. 03(5352)9804
Nippon Steel Corporation (25-3, Yoyogi 3-chome, Shibuya-ku, Tokyo, 151-8527)
※3 科学技術振興事業団研究基盤情報部フロンティア構造材料研究センター（〒305-0047 つくば市千歳1-2-1）
Tel. 0298(59)2216
National Research Institute for Metals (2-1, Sengen 1-chome, Tsukuba-shi, 305-0047)
1. はじめに

科学技術振興事業団（Japan Science and Technology Corporation. 以下JST）では、平成7年11月より科学技術庁金属材料技術研究所（National Research Institute for Metals. 以下NRIM）と3年間の共同研究としてステンレス鋼を中心とする「クリーブ組織画像データベース」を開発している。

ここで対象とするステンレス鋼は、おもに発電プラントや化工機におけるボイラ、熱交換器用材料として使用されている。このような高温、高圧環境下に長時間曝されていると、結晶粒の界面や粒内に析出した炭化物、金属間化合物の影響で金属組織に変化が生じ、やがてはクリーブ破断と呼ばれる材料破壊に至る。

実際のプラントで使用されている高価合金材では、クリーブ破断に至るまでの余寿命評価を行うことが重要な課題であり、より精度の高い評価が求められている。このためには金属組織に関する定性的な解析結果と定量的な解析結果を勘案し、総合的に評価することが有効な手段であると考えられている。

しかしながら、金属組織写真を含む金属組織に関する評価結果を体系的に網羅し、実際に余寿命評価に利用できるものは、ほとんどないのが現状である。

このような背景のもとNRIMでは、これまでにステンレス鋼を含む金属材料を対象にクリーブ試験データをまとめたNRIMクリーブデータシートを発刊しているが、今回さらに組織変化を系統的にまとめた金属組織写真集を発刊する計画である。

JSTでは、この写真集に掲載される代表的な金組織写真とこれらをもとに評価された結果を利用したデータベースを開発しているところであり、そのCD-ROMについても作成する予定である。

本稿では、現在開発中である「クリーブ組織画像データベース」のうち、これまでに完成しているデータベースについてのシステム機能面を中心に紹介する。

2. 登録データ

本データベースに登録されるデータはステンレス鋼を中心とする金属材料を対象としており、NRIMクリーブデータシートに含まれるデータに加えて、さらに長時間のクリーブ条件の画像データとそれに付随するテキストデータを対象とする。これらの中には試験時間（破断するまでの時間）が1万時間（約11年5か月）を越えるデータも数多く収められている。

画像データとしては、光学顕微鏡のほか、走査電子顕微鏡（SEM）、透過電子顕微鏡（TEM）により撮影された金属組織写真が想定されている。写真は白黒写真が主体となる。

画像データに付随するテキストデータとしては、クリーブ試験に関する材料・試験情報、撮影条件等の写真情報が含まれる。

図1には、NRIMとJSTとの間のデータの受け渡しに関する運用イメージを示す。

本開発で登録される金属組織の顕微鏡写真は、NRIMにてディジタルカメラ等を使用してディジタル化し、PICT形式の画像データとして光磁気ディスク（MO）を媒体にJSTに提供される。画像のディジタル化はおもにMacintoshパソコン環境下で行われる。画像データに付随するテキストデータもあわせてJSTに提供される。

JSTでは、提供された画像データをJPEG形式に変換し、JSTに配置されたサーバ（ワークステーション）に保存する。テキストデータは、シェルスクリプトを利用してデータベースに登録することを基本的な運用としている。

3. データベースの特徴

本データベースは、以下に示す機能を有することをもって特徴とする。これらすべての機能は、WWWブラウザを利用することを前提にしてお
3.1 粗画像による画像一覧表示機能

NRIM より JST に提供された画像を JPEG 形式に変換した詳細画像（原画像）を表示する。さらに、原画像を表示する前に目視で画像を特定できるように、画像の一覧を表示する。この画像一覧表示で使用する画像は、原画像を縦横それぞれ 20%に縮小した粗画像を用意し、表示パフォーマンスを向上させている。

3.2 画像の拡大／縮小機能

3.1で示した粗画像と原画像との 2 種類の画像表示だけでは、小さな全体図（粗画像）が画面に表示されるか、あるいは表示する原画像が非常に大きく、画面にそのごく一部しか表示されないかのいずれかになってしまう。利用者は選択肢を選択することになる。

そこで、粗画像と原画像との中間的な解像度の画像も表示可能とした。

すなわち、画面サイズに近いサイズの全体図をデフォルトで表示し、その画像よりマウスで指示された注目したい部分（Region of Interest, 以下 ROI）を中心にして、縦横それぞれ 2 倍（面積では 4 倍）に拡大した画像を表示できるようにする。拡大操作は、原画像の解像度をもつ画像が表示されるまで実行できる。

逆に縮小表示では、マウスで指示した表示画像内の ROI を中心にして、縦横それぞれ 1/2 倍（面積では 1/4 倍）で縮小された画像を表示できる。

マウスで指示した表示画像内の ROI を中心にした移動操作も可能である。

拡大、縮小、移動操作が実行された場合には、指示した ROI が認識できるように、残像を残さないぞ々々に処理が実行される。これにより、利用者に画像のどの部分にどのような処理がなされているかがわかりやすい表示になっている。

また、いずれの操作においても、独自の形式をもつ画像ファイルからリアルタイムに間引き処理を行い、表示するために必要な画像情報のみを転送することで表示パフォーマンスの向上を図っている。

さらに、粗画像と原画像の中間の解像度の画像をもつ画像を何種類も用意するのではなく、独自形式の画像ファイルを 1 種類だけ用意することで本機能を実現しており、ディスク資源の有効利用を図っている。

画像を表示する窓のサイズは、本データベース
の利用者が使用するディスプレイが800×600ドット以上の解像度を有しているものと想定し、その中に画像の（大視野）表示窓が入るように、550×420ドットとした。この大視野表示窓のほかに、利用者のネットワーク環境があり実装していない場合も考慮して小視野表示窓を設け、そのサイズを250×200ドットとした。

なお、画像の拡大／縮小機能に関わる一連の機能については、Javaで記述された新日本製鉄製品のマルチプレクションビュー“GuGoodViewer”を利用することにより実現した。

3.3 画像へのスケール情報表示（オーバーレイ）機能
画像の中でも特に顕微鏡写真の場合、写真表示とあわせてスケール情報（線分とその長さが表す実際の長さ（テキスト））を示すことが重要である。本データベースでは、データベースに登録された項目をもとに自動的にスケールを生成させる。
スケールは、以下の方法により表示する。
(1) 画像を表示する窓の横方向の1/10に相当する長さ（例えば、大視野表示窓の場合、55ドットに相当する長さ）を、「撮影時の倍率」、「横方向の画素数」、「撮影倍率に相当する画像の横方向の長さ」より算出し、この長さを基準長とする。
(2) あらかじめ設定したスケールパターンのなかから基準長を選び、かつ最も短い長さをスケールとして採用する。スケールのパターンは、以下の通りとした。
1mm, 2mm, 5mm, 10mm, 20mm, 50mm, 100mm, 200mm, 500mm,
1μm, 2μm, 5μm, 10μm, 20μm, 50μm, 100μm, 200μm, 500μm,
1mm, 2mm, 5mm, 1cm, 2cm, 5cm, 10cm, 20cm, 50cm, 1m
(3) 2で採用したスケールに相当する長さの線分とそのスケールのテキストを、横方向スケールとして表示窓にオーバーレイする。同様にして、縦方向のスケールについてもオーバーレイする。
例えば、上記の方法で表示窓の横方向の長さの1/10で2.2μmに相当するものとすると、スケールは5μmを採用し、表示窓には5μmに相当する線分と対応する実際の長さ（“5μm”というテキスト）がオーバーレイされる。
縦方向および横方向のスケールについては、表示／非表示の切り替えができる。

3.4 画像への荷重方向表示（オーバーレイ）機能
データベースにクリップ試験の荷重方向に関する情報を格納し、それをもとに荷重方向を矢印付き線分として表示窓にオーバーレイする。
スケール情報表示と同様、表示／非表示の切り替えができる。

3.5 解析図表示機能
NRIMにおいて組織写真より評価された結果を解析図として表示できる機能を設ける。
現在は、等変クリップ破断図（応力－破壊時間図）のクリップ破壊様式を色分けで示したクリップ破壊機構図表示機能のみを設けている。
今後、組織写真の解析、評価が進むにつれて、解析図のメニューが増えていくことになるであろう。

3.6 「金属材料強度データベース」とのリンク機能
JICST（現JST）よりJOIS-F「JICST/NRIM 金属材料強度データベース」がとして提供していたデータベースをWWW化し、より高機能化を図った「金属材料強度データベース」とリンクさせ、クリップ試験における材料情報や試験情報等の詳細情報を参照できるようにした。
「クリップ組織画像データベース」とおよび「金属材料強度データベース」は、NRIMにおける材料の管理体系に基づいて統一的に管理されている。このため、NRIMの材料管理体系に基づいた「金属材料強度データベース」のアクセスション番号を「クリップ組織画像データベース」の中に

—109—
4. システム環境
4.1 サーバ環境
本データベースのサーバをJST内に設けた。以下はその環境の内訳である。
【ハードウェア】
・サーバマシン：Sun SPARCstation 20 (Solaris 2.4)
【ソフトウェア】
・リレーショナルデータベース：ORACLE 7.2
・WWWサーバソフトウェア：Netscape Commerce Server
・マルチプレシジョンビューア：GuGood-Viewer（新日鐵）

4.2 クライアント環境
データベースの開発にあたっては、WWWブラウザ環境として、
Microsoft Internet Explorer version 3.02
for Windows（以下、IE ver.3.02）を前提にしたが、Javaアプリエットを利用した画像表示機能や解析図表示機能では、WWWブラウザの種類やそのバージョンによっても微妙に異なる動作を示すことが認められた。
Netscape NavigatorにおいてもIE ver.3.02との微妙な動作の違いが認められたが、基本的な動作についてはおおむねIE ver.3.02と同様の動作が得られることを確認した。

5. データベースの構成
本データベースにおいて、テキストデータはリレーショナルデータベースに格納されており、画像データはファイルとしてサーバに格納されている。テキストデータおよび画像データそれぞれの構成は以下の通りである。
【テキストデータ】
・材料・試験情報
（規格名、主成分、温度、応力等）
・析出物情報
（析出物名称、平均粒子径、生成数、面積率等）
・クリープボイド情報
（平均サイズ、生成数、面積率等）
・画像情報（撮影方式、撮影部位、撮影倍率等）
【画像データ】
・元画像（JPEG形式）
・粗画像（JPEG形式）
・GuGood-Viewer用画像ファイル

6. 画面遷移
本データベースを利用する場合の基本的な画面遷移を図2に示す。

基本操作としては、ユーザ認証後、検索条件を入力し、参照したい画像の材料・試験条件を特定する。ここで、特定した条件に対する金属組織写真の粗画像が一覧表示されるので、その中から1枚の画像を選択し、詳細画像を表示する。
詳細画像表示画面は、拡大／縮小表示が可能な画面としては、大視野表示窓を有する画面か、小視野表示窓を有する画面のいずれかを選択するこ
面（拡大/縮小表示用）の出力例を示す。
7.1の大視野表示窓内同様、紙面向かって右側が大視野表示窓であり、左上側は鳥瞰図である。
この出力例は、縦方向および横方向のスケールを非表示に設定した例である。

7.3 詳細画像表示画面（原画像表示用）
図7は、原画像表示のための詳細画像表示画面の出力例である。観察される原画像がディスプレイのサイズより大きいため、プラウザのスクロー
ム機能を利用して表示エリアを確定する必要がある。
利用者のWWWプラウザ環境によっては、Javaを利用した拡大/縮小表示機能を利用できない場合があるので、その場合には本機能を利用
して詳細画像を参照することになる。

8. おわりに
NRIMとJSTとの共同研究として現在開発しているWWWプラウザを利用した「クリープ組織
画像データベース」を紹介した。
今後、金属組織写真をもとにした解析、評価が
進むにつれて、データベースにデータを拡充し、
加えてデータベースの機能も拡張していくことにな
るであろう。
本稿で紹介したWWWプラウザを利用した
データベースの公開に関しては共同研究終了後を
考えているが、NRIMとJSTとの協議により提
供条件を決定していきたい。
現在、JST研究基盤情報部では、「高機能基盤
データベース（合金）」の開発を進めている。
これは、原子、分子の短時間でミクロな現象か
ら実用材料の長時間でマクロな現象を対象に、基
礎データベース（結晶、回折、組成特性、状態図）、
計算物性データベース（バンドエネルギー、電荷
密度分布等）、エンジニアリングデータベース（ク
リープ、照度、拡散等）から成り、物質研究、材
料設計に役立つ新たなデータベースとなる。
情報メディアという観点からみれば、数値・テ
図3 詳細画像表示画面（拡大／縮小表示用） 一大視野一

図4 詳細画像表示画面（移動処理実行中）
図5 詳細画像プリント用プレビュー画面

図6 詳細画像表示画面（拡大／縮小表示用）——小視野—
図7 詳細画像表示画面（原画像表示用）

キスト、図表、金属組織写真を含む写真等を有するマルチメディアイデータベースとなる計画である。

本開発で得られた金属組織写真の表示方法についての内容を「高機能基盤データベース（合金）」の分項に反映させたい。

～～～～　参考文献　～～～～

1）村田正治、田中秀雄、阿部富士雄、入江広実、八木晃一．SUS304H鋼の長時間クリープによる金属組織変化とその画像解析、材料とプロセス、1061421（1997）
2）科学技術庁金属材料技術研究所、たとえば、NRIMクリープデータシート No.4B、1986、32 p.
3）鈴木一明、志村和樹、馬場義雄、坂本正雄、森下弘、金澤健二．JICSTファクトデータベース JICST ／ NRIM金属材料強度データベース、情報管理、334332-347（1990）
4）小住博穂、最新材料関連データベース実状ミクロからマクロまで、まるであ（6月号掲載予定）

—114—