
4. Das Diphenylguanidin wirkt auf den isolierten Herz des Frosches lähmend; sein Angriffspunkt liegt vielleicht im Herzmuskel und im Reizleitungssystem. Die oben erwähnten zahlreichen Derivate wirken in kleinen Dosen auf das Herz reizend, dagegen dieser Stoff nicht.

7. Diphenylguanidin wirkt bei subkutaner Injektion in kleinen Dosen auf die Gerinnungszeit des Blutes verkürzend; in mittleren Dosen wird diese Wirkung am stärksten, mit gleichzeitiger Zunahme des Fibrinogens und Thrombins im Blute; dagegen wirkt es in großen Dosen verlängernd, mit gleichzeitiger Verminderung des Fibrinogens und Thrombins. Wird der Stoff dem Blute im Reagensglas zugesetzt, so hat er in niedrigerer Konzentration auf die Blutgerinnbarkeit keinen Einfluß; erst in sehr hoher Konzentration verzögert er die Gerinnungszeit beträchtlich. (Autorisierat)

48.

615-099-092

動物體内解毒作用ト其ノ変調ニ関スル研究

岡山医科大学鶴見内科教室（主任鶴見教授）

医学士 佐藤静馬

医学士 鶴見昌雄

【昭和13年6月2日受領】

第1章 序

生體ハ外界ヨリノ傷害ヲ對シノ外惹體内ノ侵入シタル異物ヲ對レ定ノ防禦作用ヲ有シタリ，ノノ異物ヲヨリタ自己ノ安全ヲ維持セント努ムルナル，ノノ反応ヲ或ト所謂 Pathergie ノ状ヲシテ

Urbach1) の記載＝ヨレベ抗原抗體反應ヲ以テスル Allergische Pathergie ト Moro 及び Keller2) 等ノ所謂 Parallergie 及び Metallergie ア含ム Parallergische Pathergie 及＝抗原抗體反應ヲ以テセダル Nicht allergische Pathergie オ 3 ＝大
830
佐藤静爾 藤岡昌雄

第2章 実験方法及び実験材料

「エチアルアルコール」（以後単に「アルコール」
ト記す）「ヒドロキシノノ」及び「コルヒチン」＝對ス
ル動物ノ感受性ヲ知ル＝，之ヲ併せテ少量ヲ
漸次増量シテ對ノ検査ラス＝，動物＝皮下注射シ24時
間以内＝死亡シテタルノヲ観察セリ。注射ヲ行ウ
死＝至ルマデノ時間ヲ観察シテタルモノハ其ノ時間
ヲ記シ，時間不明ノモノ＝ハ其ノ死亡率ヲ求メ，
ノ死亡率ヲ求メ，24時間＝元気正常ト異トララ
ザルモノ＝僅シフ＝21時間＝元気消長セルハ
3日間引続き生存ヲ観察セリ。カタテ＝等ナル
動物ノ死亡ヲ確認セル後，動物ヲ2群＝分
テ1群ハ「ナゾロキシン」其ノ他＝前記シテ，他
へ対照トシ，各群＝少量ヲ注入シテ
其ノ24時間＝死亡率ヲ求メ，之ヲ比較シテ
感受性ニ差異＝認めマツ，又死亡率＝変異
ナキモノ＝テハ夫々死亡時間ヲ求メ，此比較＝ヨリ
テ判断＝資セタリ。

実験動物トシテハ體ヲ「マウス」ヲ用ヒ，對照群
ト試験群トヘ10gヨリ20gノ間ノモノ＝テナル
ベタ同一體重モノヲ選ヒ，又変異ヲ一定トスル為
＝購入＝際シナルベタ雄性「マウス」ヲ選ミタリ。

第3章 「アルコール」「コルヒチン」及びピ
「ヒドロキシノノ」「マウス」二製
スル毒性試験

第1節 「エチアルアルコール」＝毒性試験

先づ「アルコール」＝「マウス」＝皮下注射シテ
24時間後＝於ケル生死ヲ観察シテナル＝，pro 10 g
＝0.03 cc（10%溶液＝稀釋シ注入ス）＝テハ元
気，0.04 cc，0.05 cc，0.06 cc迄全部生＝0.07 cc＝
至リ2例＝中死＝，0.08 cc5例＝中死＝，0.09 cc5例
中死＝，0.1 cc21例＝中死＝，0.11 cc5例トモ全部
死，即ち「アルコール」「マウス」＝對スル最少致
死量＝0.1～0.11＝アルト察セスベシ。

Pro 10 g 0.10 ccノ20例＝全数＝ヨリ3群
＝分け見レバ＝10～12 g ノモノ7例＝テハ死亡率
85.7%，15～18 gノモノ7例＝テハ同ジク85.7%，
17～23 gノモノ7例＝テハ100%トナリ，コロノ
平均死亡率＝90.5%トナレリ（第1表）。
下=注水シタル=6時間後=18時間後=何レ=死亡シタリ（第2表）。

尤ち「ホルヒチン」ノ「マウス」=対スル最少致死量ヘ=0.10-0.15 cc pro 10 g =アルベシノ。

尤ち「ホルヒチン」中毒=特性=動物=注入後数時間=乃至=10 数時間=致リテ=メテ=其ノ中毒=発揮シ、元ノ因=麻痺ヲ次デ=全身=適=運動性麻痺ヲ来シ=於=ヘ=血性下痢等ヲ併発スル=アリ。

第3節 「ヒドロキシノン」=中毒=試験

尤ち「マウス」2匹=於テ「ヒドロキシノン」10%新鮮凍結=食餌水溶液（N/10 H2SO4 5滴=加ぶ）pro 10 g 0.5 注水シタル=何レモ死亡シ、

次=同水ノ1%=溶液同量=1例=注入シタル=、2分後=死亡=アリ。

次=6例=同ジ=71%#45.;溶液=0.2 注水シタル=、注入後=至=4分後=末=麻痺=発シ=2分後=ヨリ=、長キ=19時間後=於テ=死亡セリ、即ち=上=何レモ=死亡率ヘ=100%=ナリ。

依ツテ更=溶液=15%溶液=0.15 cc 注水シタル=、9例中=4=5分後=麻痺=発シセリ2例=於テ=17=18時間後=死亡シ、他=6例=ヘ=程度=麻痺=発シ=レモ=同=気=悪=シ、何レモ=生存セリ、即ち=此=群=於テ=9=例=死亡率=22.3%=ナリ。

次=4例=於テ=1%液=0.1 cc 注水シ、又=1例=於テ=0.05 cc 注水シタル=何レモ=生存セリ、即ち=「ヒドロキシノン」=「マウス」=対スル最少致死量ヘ=1% 0.2-0.15 pro 10 g =於スか得ベシ（第3表）。

向テ「ヒドロキシン」中毒=症状=トケテ注水後動物=マウス=不安感ヲ来シ、次デ=2分後=四肢=間=性=麻痺ヲ来シ=或=死亡シ、列=レタル=モノ=テ=実験=施スル=モノヘ=於テ=安静トケテ=見=同=シラシタル=加ナル=列=頭=前=フレ=向テ=陰=テ合=リテ=5=6時間=内=再=第2=ノ中毒症状ヲ発シ=この=何多ク下=腹=陰=麻痺ヲ=来スサリ。

第4章 「サイロキシン」前處理ガ「マウス」ノ「アルコール」「ホルヒチン」及び「ヒドロキシノン」中毒ニ=

第1節 「アルコール」中毒=及ボス影響

マウス=2匹=於テ=「サイロキシン」pro 10 g 0.02 cc 皮下=注入シ=30分後=「アルコール」ノ最少致死量=即チ=pro 10 g 0.10 cc 皮下=注入シタル=2匹=於テ=死亡セリ。次=「サイロキシン」0.05 cc 皮下=増加=シタル6例=於テ=テ=ノ=同様=「ア

ロール」注入=ヨリ=5例=存在。1例=死=、「サイロキシン」0.10 cc 皮下=注入シタル8例=於テ=死=4例=存=、

他=30 cc 皮下=注入シタル2例=於テ=何=例=死=、1例=死=テ=ナリ。

以上の各=場合=於テ=ケル=死亡=ヘ「サイロキシン」0.02=場合=於テ=100%、0.05=ノ=夫レ=16.6%、0.10=及び

「ヒ20=夫レ=50%=シテ、此時=ノ=場合=對=応==高レ=照=死=ノ=死亡率ヘ=85.7-100%、平均=90.5%=

ノ=高レ=示=サ=故=、「サイロキシン」前處理ヘ明=「マウス」ノ＝エチールアルコール＝=対スル抵抗=力ハ高ム=ト=云=得=ベシ（第4表）。

第2節 「ホルヒチン」中毒=及ボス影響

マウス=1例=於テ=「サイロキシン」pro 10 g 0.05 cc 皮下=注入シ=5=10分後=「ハルヒチン」最少致死量=（pro 10 g 0.05% 溶液=0.10 cc）7=皮下

=注入シタル=24時間後=6例=死亡、24=34時間後=5=例=死亡シテ、即ち=24=34時間後=ノ=死亡率ヘ=54.5%、34時間後=ノ=トレガ=100%=ナリ、之=對応=死=照=試=於テ=於テ=死=率=12.5%=

シテ、即ち=「サイロキシン」前處理=「マウス」ヘ=於テ=ケル=死亡率=於テ=大ナル=知=ナル（第4表）。

以上=ヨリ「サイロキシン」前處理ヘ「マウス」ノ「ホルヒチン」中毒ヲ却=テ=増=セ=シ=ムト=云=得=ベシ。

第3節 「ヒドロキシノン」中毒=対スル影響

マウス=9例=於テ=「サイロキシン」pro 10 g
0.05% 筋皮下注射 5—10分後「ヒドロキノン」
pro 10g 1% 0.15cc 筋皮下注射シタル＝24 時間後 3 例死亡死例、(死亡率＝33.3%)。 對照ノ
22.3% 筋注射実際に大ナル差ナリ、ヨリテ「ヒドロキノン」注入加 0.2 ＝増加シ、前處置群ト對照
群＝分チ、実ナル試験ヲ基シモトシテ A、B、C 3 組＝分チ、第 1 組 A 玉＝於テハ「サイロキシン」
pro 10g 0.05＝チ前處置レ、「ヒドロキノン」ヲ注入シタル＝、死亡率＝83.3%、死亡平均時間 2 時
間 56 分、對照群＝於テハ死亡率 33.3%、平均死亡時間 2 時間トナリ、B 組 5 例＝於テハ A 組同様
＝前置シタル＝死亡率 80%、死亡モノ平均死亡時間 7 時間 50 分、對照群＝於ケハ死亡率 60%、平
均死亡時間 4 時間 12 分トナリ、C 組 5 例＝
ナハ、死亡率 100%＝シテ平均死亡時間 1 時間 53
分トナリ、對照群＝於テハ死亡率 80%、死亡モノ
平均死亡時間＝3 時間 14 分トナリ (第 4 表)。

即チ以上ヨリ「サイロキシン」＝前處置シタル
群＝於テハ對照群＝比シ共ノ何レ＝於テモ死亡率
ハ大トナリ、「サイロキシン」前處置ハ「マウス」
ノ「ヒドロキノン」中毒＝對スル抵抗ヲ減弱セシ
ム。

第 4 節 小 括
以上ヲ小括レバ「サイロキシン」前處置ハ「ア
ルコール」＝對スル「マウス」ノ抵抗ヲ増進シ、
反之「コルヒチン」及び「ヒドロキノン」＝於スル抵抗
ハ之ヲ減弱セシト云フヲ得ベシ。

第 5 章「メチレン青」前處置ガ「マウス」
ノ「アルコール」「コルヒチン」及
ビ「ヒドロキノン」中毒＝對スル影響

第 1 節「アルコール」中毒＝對スル影響
「マウス」8 例＝於テ「メチレンブラウ」pro
10g 0.1% 0.1cc 屆静脈内＝注入シ 10 分後「ヒドロキ
ノン」1% 0.15 pro 10g 注入シタル＝24 時間後死
亡率＝ハ 100%＝ナリ (第 5 表)。

次＝前處置群ト對照群ヲ各體重ノ近似ヲセ
5 例、3 例、5 例ノ 3 群ヲリ、之＝「メチレンブラ
ウ」pro 10g 0.1% 0.1cc 静脈内注入後、10 分後「ヒド
ロキノン」1% 0.2cc 注入シタル＝前處置群＝
チ細第 1 群＝於テハ死亡率 5 例中 100% 平均死亡
時間 2 時間ナリ、對照群＝ハ死例率 5 例中 80%、平
均死亡時間 1 時間 07 分ナリ、第 2 群＝於テハ前處置

60
尾静脈=注入レ1時間後「コレヒチン」最少致死量
(pro 10 g 0.05% 0.1 cc)皮下=注入シラ=3例
へ24時間=死亡シ、5例へ=29時間=死亡セリ。
郎ち24時間=死亡率=37.5% 30時間=内
トラペラ=死亡率=100% トナリリ。之ヲ第3章第2
節ノ対照箱ヲ比較スル、「コレヒチン」ノ毒性
ハ増強セラレ（第6表）。乳酸酱達ハ「マウス」ノ
「コレヒチン」解毒作用ヲ低下セシムガ加レシ。

第3節「ヒドロキシン」中毒＝對スル影響
「マウス」併前処置群ト対照群ト＝分チ、各々
催＝標準トシテ5例 5例°3例ノ3群ヲトトル。
今乳酸酱達pro 10 g 1% 1cc宛＝テ前処置＝
（静脈注入）60分後「ヒドロキシン」pro 10 g 1% 0.20cc
宛皮下注入シタール、第1群＝テハ5例中死亡率
100% 平均死亡時間=4時間31分＝シテ対照群＝
テハ5例中死亡率=100% 平均死亡時間=5時間26
分ナリ。第2群＝テハ前処置群5例中死亡率=60%
平均死亡時間=4時間12分、第3群＝テハ前処置群
3例中死亡率=100% 死亡時間=11時間35分、対照
群ハ3例中死亡率=100% 平均死亡時間=3時間48
分ナリ（第6表）。
郎ち以上ヲ死亡率＝於テハ前処置トノ間＝差ヲ
見ズ暴性ハハズレモ、平均死亡時間＝於テ前処
置群ノ方延長ノ傾向ヲ示シ、乳酸醬達ハ相対ヲラ
「ヒドロキシン」中毒＝對スル「マウス」ノ抵抗カ
増強セシムヲ観リタリ。

第4節小括
以上ヨリ乳酸酱達前処置ハ「マウス」ノ「アルコ
ール」＝對スル抵抗カヲ増加シ、「コレヒチ
ン」＝對スル抵抗カヲ増加シ、「ヒドロキシ
ノ」＝對スル抵抗カハ著明ナルザデモ弱ヲ增進セ
シムガ如シ。
第1節 「アルコール」中毒＝血アルコール
「マウス」7例＝於テ「カゼオザン」pro 10 g 0.015 cc尾静脈内＝注射後10分間＝レテ「アルコール」pro 10 g 0.1 cc皮下注射シタル
＝確実死亡シタリ。
次＝3例＝於テ「カゼオザン」pro 10 g 0.025 cc尾静脈内＝注射後30分間＝同型＝「アルコール」注入シタラ＝1例生存、2例死トナルリ。
次＝2例＝於テ「カゼオザン」pro 10 g 0.04 cc及び0.08 cc尾静脈内＝注射後2時間＝「アルコール」0.1 cc皮下注射シタ＝1例生、1例死トナルリ。
次＝4例＝於テ「カゼオザン」pro 10 g 0.4 cc &尾静脈内＝注射後5時間＝「アルコール」0.1 cc皮下注射シタ＝全例死タナルリ
以上16例＝於テハ死亡率＝全体＝87.5%トナルリ。
次＝5例＝於テ「カゼオザン」pro 10 g 0.01 cc尾静脈内＝注射後2.5時間＝「アルコール」pro 10 g 0.1 cc皮下注射シタ＝4例生存、1例死トナルリ。
次＝13例＝於テ「カゼオザン」pro 10 g 0.02 cc尾静脈内＝注射後5時間＝「アルコール」pro 10 g 0.1 cc皮下注射シタ＝8例生存、5例死トナルリ（第7表）。
以上277例＝於テ＝死亡率＝20%及び18.5%トナルリ平均33.3%トナルリ。
即チ「アルコール」pro 10 g 0.1 cc＝注入シタル注射例＝於ケ＝死亡率＝90.5%＝レテ＝死亡率＝減少アリ。又前16例＝於テ＝平均死亡率＝87.5%＝レテ＝於テ＝前例＝於テ＝死トナルリ。
即チ「カゼオザン」＝注入＝「マウス」＝「アルコール」解毒作用＝増強セシムモノ＝可否＝べタ、且＝此際「カゼオザン」注入＝ト＝注射後＝可＝可＝シト＝影響＝有ル＝観見シ心得ペシ。
第8章 ハドロキノン中毒とアルコール中毒の比較

第1節 「アルコール」中毒と「ハドロキノン」中毒の比較

「アルコール」中毒の発症は、アルコールの摂取量と摂取時間によります。少量で摂取した場合でも、摂取後数時間以内に発症することがあり、症状は顔面の赤み、嘔吐、意識障害、変動を伴うことがあります。また、長時間にわたり摂取した場合、肝臓の障害を引き起こす可能性があります。

一方、ハドロキノン中毒の場合、症状の発現は摂取後数時間から数日間、または数週間後で見られることがあります。症状は、頭痛、嘔吐、意識障害、変動を伴うことがあります。また、重篤な場合は、肝障害を引き起こすことがあります。

両者の中毒の発症機序は、アルコールは肝臓への代謝を行い、ハドロキノンは肝臓での代謝を困難にすることにより、肝障害を引き起こすものと考えられています。

第2節 「アルコール」中毒と「ハドロキノン」中毒の治療

アルコール中毒の治療法は、主に神経症状の緩和、脱水療法、心肺蘇生などの基本治療法を用いることが一般的です。また、肝障害を予防するために、早期の発見、早期の治療が重要です。

一方、ハドロキノン中毒の場合、治療法は重篤な症状を伴う際には、重症でない症状を伴う場合は、早期の発見、早期の治療が重要です。また、早期の発見、早期の治療が重要です。
静脈注射へ抗がん剤スルキ，薬理時効へ大量ノ異へザル吸収不速リル言セリ，Denel及びBookby9)へ人間アテソソ効用，熱敷敷ノ増加圧＝尿窒素排泄量へ上昇スル事ヲ証明セリ。ノ他Hopping10)，Müller及Fellenberg11)，Kocian12)，Arnold13)，Gabbe14)，Bookby及Sandiford15)，Löser及Freydank16)，Ahlgren17)等へ夫々详细ナル研究ヲ発表セリ。

Schechter18)等ノ解毒作用ノ詳細ヲ検スルガ，肝内及大脳神経細胞合体アテチアンノ解毒作用ヲ示す研究ノ有無ヲ知り，「サイロキシン」＝ヨリ用ヒテ前処置スレルタ「トフツ」及び「マウス」＝於テヘ肝ノ機能が著明＝増強スル事ヲ知リ，肝細胞＝ヨリケテ検スル事が証明セリ。「サイロキシン」＝ヨリ肝臓ノ「チアン」解毒作用ノ著明ヲ著セリ，「デリーゲン」減少＝基盤ノ解毒タテアル＝うべセリ。

次へ甲狀腺ノ解毒作用＝及ボス影響乃至へ薬物ノ畫治療＝タテムノメテ詳細ナル研究ヲ試ミタルヘ，如タHunt17)＝テシテ，氏ハ「マウス＝ツキ甲狀腺血液ヲ検セレムシマルヘAcetanilid＝對スル解毒作用ヲ抵抗スレバシタ增強スル事ヲ報告セリ，爾来Trendelenburg16)，Ghedini17)，Gottlieb18)，Lussky19)，Olds20)，Wuth21)，Hildebrandt22)，Gellhar23)，Miura24)，Busso25)，石橋26)，Anan27)，Peal28)等ノ遠近ラソ試薬スレッサ精細ナル薬理ヲ発表シ，諸家底ハHunt17)＝ツキ尚言セリ。阿南19)ハ「マウス＝於テ甲狀腺物質ヲ尿へラレ減ヘ＝シ＝モリフン」、「ヘリオン」＝知ノ習慣性ヲ来スモノ＝設スル抵抗ヘ減縮スシ，「デニシノン」、「コディノン」＝如キモノ＝影響ナキ事ヲ云ヒリ，Asher29)＝ヨレ＝解毒性缺乏＝對スル感受性へ甲狀腺機能＝低下＝シテ，吸入性蒸気及び「モルヒン」等へ知テ抵抗機能ヲ減ス，薬物ハ「ペセドウ」等ノヨリノ有害ナルセレム，又König31)＝ヨレ＝炭酸石灰ヲ負荷＝對スル抵抗ヘ＝「サイロキシン」投與＝ヨリレク減シ，Freidank32)＝ヨレ＝「水道クルール」，「モリフン」，「ノボカイノ」へ「サイロキシン」＝ヨリスノ効力ヲ増加シ，組織崩壊＝ヨリレクノ毒素＝減スル（Frühgifte im Sinne Freunds）ヘ前処置＝心臓＝ヨリ有害＝シテ，又「ヘリ＝シ」患者ノMechanismus der veränderten Reaktion＝Adrenalin 外＝ Adrenalin 権物質＝（Spätgifte im Sinne Freunds）＝タテガ，之ガ促進スナラセリ。
Schechter(32)は「サイロキシン」=ヨル「肝チアノン」解毒作用ノ消失ヲ呑モ「グリコゼン」減少= 賦セシメントシ、一方 Winokuroff 及び Epstein(33) 学=コヨレバ「サイロキシン」=「肝グリコゼン」ヲ 減少セシムモノナレバ、方方面コヨレル「ヒドロヒチン」=「ヒドロキシン」解毒作用ハ増進シテルト解説セリ。ト考フルア得べん。又=「メチレンヒチン」，「ヒドロキシン」ノ解毒に於テ=「メチレンヒチン」=ヨリテ増進セラルトノ結果ヲ余ノ実験ヘ示セルガ，之ヘ H. Vollmer 等ノ結果=一致スルモノニシテ、前述「サイロキシン」前處理ノ場合ト同様=解シテ可テナラリ。乳酸渦還＝開レテヘ Riegel(37) ハ犬＝於テ静脈 内＝注入ルレバ5分後＝ハスデ＝注入セラルト 乳酸量ノ3/5=血中ヨリ消失シ，血中ノ無機酸性乳 酸量ト同時＝低下シ，糖酵解が徐々＝上昇スル事 タ認メ，之ヲ血中＝注入セラルトノ乳酸へ生着内 テテ成熟セラレテ乳酸ト共護＝直テ＝Lacticaci- clogen 及び Glykogen =合成ナルラリト結論セリ。Velucognia(37) ハ人間＝臨床的＝乳酸渦還ヲ 奥へテ20分後ラテハ血中乳酸量却フテ減少ス ルルタ認メ，之ハ乳酸合成＝新見＝ヨリト解シ，又 インシュリ＝注入＝於＝影響セール事ヲ述べタ リ。Edwards 及び Sanger(34) ハ魚ノ心臓ヲトリ出シ「リング」液中に=ツルシ，Monojodesissgäure ハ 深穢スル＝於テ=ヨリチ其ノ無機電気的効果＝對スル反応 ノ Refraktärperiodio ヴ＝緊密スル事ヲ述べ，此中 毒症＝於＝乳酸渦還ヲヲハヘル＝ニ＝ヨリチ消失スルス ルケリ，Hartmann(38) ハ乳酸渦還＝際＝精細ナル 研究ヲ発表セリ。ノチ＝乳酸渦還＝體内＝入リテ 1～2時間後＝ハスデ＝血液中＝酸素＝グロコース＝= 確定シ，遊離レタル Na「イオン」ヘ「重炭酸ナト リウム」トシテ飼液中に＝現ハルモノ＝シテ，肝臓 胚発酵アル場合＝＝此変化＝遅延ナルトレシタ ル。木村及＝早坂(32) ハ＝ヨリハ中性乳酸遊離＝静脈 内＝注入ルレバ5分後＝ハ血中，筋中＝乳酸量 増大シ，酸素消滅量増大シ，30～60分後＝＝同＝再 ス＝。乳酸遊離＝グロコース＝合成ナルト遊 種＝レタル Na ハ一部＝組織呼吸＝於＝乳酸酸化＝＝ テ＝生成セし CO2 ト結合シテストセリ。 余＝ノ＝結果＝於＝テハ，乳酸渦還前処置ヘ「マウ ス」ノ「アルコール」解毒作用＝於テスルヘ＝其=
ナル相互関係を究明すべき所なり。而し其ノ機能
=就テハ何レモ解毒作用=ヨヲ「肝クリオゲン
」ノ増加、從テ所謂Hyperhepatismusノ状
態下=於ケル肝解毒作用尤も其ノ因ヲ求メル
如し。

Schwab3)ヘ葡萄醗=アル種々ノ動物ノ解毒ヲ
検シ、即=於テ「ストリヒシ」中毒=ヘ葡萄醗ノ
解毒作用ヲ認メズ、即=テハ「ストリヒシ」ノ
酸化及ビ流血=對シテ共ノ解毒作用ヲ認メ、猶及
ビ糖=テク糖酸=對シテ差別、「マウス」=テク糖酸
及び「エーテル」=對シテ差別、「ブチテ=テク糖酸
=對シテ差別、家鬼=テク糖酸、「クロロホルム」及
ビ「ストリヒシ」=對シテ差別。而シテ酸化及ビ流血=對
シテ差別、犬及ビ霧=テク糖酸=對シテ差別
ノ成績ヲ示セリ。而シテ「マウス」=於テ酸化及
ビ「エーテル」=對シテ解毒作用=酸化ナルシテ
醗及びテク麴酸=於テヘ解析注入=於テ
Θ時間後=其ノ顕著ナル作用ヲ発現スペリモ
ノ=テ氏ノ実験=テク皮下注入後1〜2時間=於
サテリ=ヨルヲ云ベリ。

前述ノ如Z Schechter4)ヘ障々ノ脳器ノ酸化結
合能力ノ実験=於テ肝ノ此結合能力=葡萄醗注入
ヨリテ著ヲ増大スル事ヲ要セリ。Gerschelow-
itz及ビCampbell44)ノ家鬼=於テ暴死=於テ「ク
ロロホルム」中毒=於テ肝、胃、心ノ選元「グル
タチオシン」が著シ=酸化セルノ醗、「クロロホルム」
投與前=葡萄醗ヲ投與スル事=ヨリテ其ノ酸化ヲ
防止シ得ル=事ヲ證シ、肝ヘ「グルタチオシン」貯蔵ヲ
為スヘキ夫々生産シ、之ヲ脳器=「グルタチオ
シン」ヲ與ヘル装置=レテ、葡萄醗夫々自身ヘ「グル
タチオシン」含蓄ヲ増加セシメタルモ「クロロホル
ム」等ノ毒物=ヨリ其ノ減少ヲ保護スルモノラ
ントト云フ。WiegaNd5)ハ改良Warburg法=テ
「マウス」=肝切片=就テハ放射線ヲ測定シ、KCN
添加=ヨリ酸退シ即時酸Dioxyacetonヘ=葡萄
醗細ヲ添加スル事=ヨリテ共ノ酸退ヨリ防止セル
ル事ヲ観察セリ。但シ吉田氏5)ヘ反シ、氏
ノ実験=於テ家鬼「ストリヒシ」中毒=於テ葡萄
醗が著影響ヲ與フ解毒作用ハザリキヲ述べ
タリ。

向ノ毒物解毒=腸スル以外ノ生體防護作用=於
テヨリ葡萄醗ハ影響ヲ與フガ如々、例ヘハ
Fanelli6)ハ海馬=於テ「テフスブ」=對シテ解毒
作用=葡萄醗ノ厳量注入=ヨリテ観察=上昇スル
事ヲ證シ、島田氏5)テ同様ノ事ヲ認メタリ。

今余等ノ実験=於テハ「アルコール」、「コールヒ
ン」及ビ「ヒドロキシン」ノ何レニ對シテモ「マウ
ス」ノ解毒作用ヲ増進セシムラ如キ結果ヲ到達
セリ。而シテ此結果へH. Vollmer/葡萄醗=ヨ
リテ「アルコール」へ解毒セリ、「コールヒン」及ビ
「ヒドロキシン」=對シテ反則=共共ナ力ヲ増進
セシムトノ成績ヲ多少相違ス、従テ余等ノ立場
ボリノテ論ズレバ、葡萄醗が肝醗酸等塩作用ヲ
增進スペキ諸家(Wiegand5)、田頭5)等ノ証
ヘル乃テナル酸化=ヨリテ其ノ毒力ヲ減弱スペリ
「コールヒン」、「ヒドロキシン」が葡萄醗=ヨリテ
即テ解毒セラルノ事ヲ既ノ次ヲ示セタヨントフ
＝、之ヲ毒物=對シテ解毒作用作用=ノ=殻セルスペリ=非
ザルベント點ノ=於クナル。

以上ノ関係ヲ総觀スレバ「アルコール」ヘ酸化機
轉ヲ増進スペキ「サイロキシン」、「メチレン青」、
乳酸処置、「カゼオザン」及ビ葡萄醗=注テヨリ
チー=解毒セラレ、「コールヒン」ヘ反シ、葡萄
醗以外ノ=ヨリテヨリテ共ノ毒性ヲ増進セラレ、只
葡萄醗=ヨリテノ=解毒セラレ、「ヒドロキシン」
ハ共ノ中間=アル「サイロキシン」、「メチレン
青」=ヨリエ共ノ毒性ヲ増大シ、乳酸処置、「カゼオ
ザン」及ビ葡萄醗=ヨリテ解毒セラルガ如シ。

即チ以上ノ成績ヨリ考察スレバ生體ハ「アルコ
ール」=解毒=於テヘ生體酸化機構ヲ失フ共ノ主役ヲ演
スペキ見レル=殻カラザル所ナリトス。

Pringsheim6)ハ Alkoholgewöhnungノ問題
ヲ研究セテ、習慣性動物ト非習慣性動物ト比較ス

840 佐藤治郎、鈴倉昌雄
第10章 結論

「マウス」用ヒツジアルコール」や「コルヒチン」及び「ヒドロカジシン」中毒は、対スル酸化薬物としてアルコール中毒の主症状を引き起こす。特に酸化薬物がアルコール中毒の原因であること、及びその薬物の肝機能障害を超えると、アルコール中毒の症状が増強する。さらに、酸化薬物の作用機序については、主に肝臓が関与していることが示唆される。

1) 「マウス」アルコール」解毒作用には「サイロキシン」メチレン青、乳酸脳液、カゼオザン」及びビタミンC前処置＝ヨリシー増强ス。
2) 「マウス」コルヒチン」解毒作用には「サイロキシン」メチレン青、乳酸脳液及び「カゼオザン」前処置＝ヨリシー減弱シ、ビタミンC前処置＝ヨリシー増強ス。
3) 「マウス」ヒドロカジシン」解毒作用には「サイロキシン」及び「メチレン青」前処置＝ヨリシー減弱シ、乳酸脳液、カゼオザン」及びビタミンC前処置＝ヨリシー増強シル。

【編者様】

本稿の一部は、講義録に掲載された内容をもとに執筆されたものである。
表及文献

第1表 「マウス」＝対スル「エチアルコール」ノ毒性試験

<table>
<thead>
<tr>
<th>「マウス」</th>
</tr>
</thead>
<tbody>
<tr>
<td>10白 0.03 生</td>
</tr>
<tr>
<td>11白 0.04 生</td>
</tr>
<tr>
<td>12白 0.05 生</td>
</tr>
<tr>
<td>9白 0.06 生</td>
</tr>
<tr>
<td>10白 0.07 生</td>
</tr>
<tr>
<td>11白 0.08 生</td>
</tr>
<tr>
<td>10白 0.09 生</td>
</tr>
<tr>
<td>11白 0.10 生</td>
</tr>
</tbody>
</table>

第2表 「マウス」＝対スル「コルヒチン」ノ毒性試験

<table>
<thead>
<tr>
<th>「マウス」</th>
</tr>
</thead>
<tbody>
<tr>
<td>10白 0.05 生</td>
</tr>
<tr>
<td>10白 0.10 生</td>
</tr>
<tr>
<td>12白 0.11 生</td>
</tr>
<tr>
<td>12白 0.12 生</td>
</tr>
<tr>
<td>12白 0.13 生</td>
</tr>
<tr>
<td>16白 0.16 生</td>
</tr>
<tr>
<td>18白 0.18 生</td>
</tr>
<tr>
<td>20白 0.20 生</td>
</tr>
</tbody>
</table>

※「コルヒチン」へ0.05％生理食塩水溶液
第3表 「マウス」=対スル「ヒドロヒノン」毒性試験

<table>
<thead>
<tr>
<th>症状</th>
<th>「ヒドロヒノン」注射量 (pro 10 g)</th>
<th>生死</th>
<th>死亡マテノ時間</th>
<th>例数</th>
<th>生:死及び生:死死亡率</th>
<th>動物ノ状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10%生理食塩水添加 0.2</td>
<td>死</td>
<td>30分</td>
<td>3</td>
<td>0:3</td>
<td>注射後直=発症</td>
</tr>
<tr>
<td>10</td>
<td>1% 0.5</td>
<td>死</td>
<td>6分</td>
<td>100%</td>
<td>2分後同上</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>白1% 0.2</td>
<td>死</td>
<td>6分</td>
<td>100%</td>
<td>4分後同上</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>白</td>
<td>0.2</td>
<td>17時間</td>
<td>6</td>
<td>2分後同上</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>白</td>
<td>0.2</td>
<td>2時間</td>
<td>22.3%</td>
<td>2時間</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>白</td>
<td>0.2</td>
<td>5時間</td>
<td>0%</td>
<td>10分後</td>
<td></td>
</tr>
</tbody>
</table>

第4表 「サイロキシン」前処置実験

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物体重 (g)</th>
<th>「サイロキシン」注射量 (pro 10 g)</th>
<th>注射間隔 (分)</th>
<th>「アルコール」注射量</th>
<th>24時間後生存数</th>
<th>死亡率 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>コール中毒</td>
<td>18</td>
<td>12—15</td>
<td>0.02</td>
<td>30</td>
<td>0.1</td>
<td>2</td>
<td>100</td>
</tr>
<tr>
<td>コール中毒</td>
<td>6</td>
<td>7—15</td>
<td>0.1</td>
<td>10</td>
<td>0.1</td>
<td>3</td>
<td>50.0</td>
</tr>
<tr>
<td>コール中毒</td>
<td>8</td>
<td>11—14</td>
<td>0.2</td>
<td>5-10</td>
<td>0.1</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>ヒドロキシン注入量</td>
<td>11</td>
<td>11—12</td>
<td>0.05</td>
<td>5-10</td>
<td>0.1</td>
<td>11</td>
<td>100</td>
</tr>
<tr>
<td>ヒドロキシン注入量</td>
<td>18</td>
<td>12—18</td>
<td>0.05</td>
<td>5-10</td>
<td>0.1</td>
<td>3</td>
<td>33.3</td>
</tr>
<tr>
<td>平均</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>死亡時間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>10—14</td>
<td>0.05</td>
<td>5-10</td>
<td>0.20</td>
<td>2分</td>
<td>83.3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>15—18</td>
<td>0.05</td>
<td>7-10</td>
<td>0.20</td>
<td>80.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18—24</td>
<td>1分</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>12—18</td>
<td>注射ナシ</td>
<td>2分</td>
<td>33.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>15—18</td>
<td>4分</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20—24</td>
<td>3分</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
第5表 「メチレン青」前処置実験

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物体重 (g)</th>
<th>1%「メチレン青」注射量 (pro 10 g)</th>
<th>注射間隔 (分)</th>
<th>「アルコール」注射量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>19-21</td>
<td>0.12</td>
<td>60</td>
<td>0.1</td>
<td>6</td>
<td>75.0</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18-22</td>
<td>0.48</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18-19</td>
<td>0.06</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td>8</td>
<td>47.0 (平均)</td>
<td>計</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

「コール中中」れ

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物体重 (g)</th>
<th>1%「ヒドロキノン」注射量</th>
<th>注射間隔 (分)</th>
<th>「アルコール」注射量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16-21</td>
<td>0.10</td>
<td>10</td>
<td>0.15</td>
<td>8</td>
<td>100</td>
<td>計</td>
</tr>
</tbody>
</table>

第6表 乳酸亜塩前処置実験

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物体重 (g)</th>
<th>乳酸亜塩注射量 (pro 10 g)</th>
<th>注射間隔 (分)</th>
<th>「アルコール」注射量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17-23</td>
<td>0.1</td>
<td>60</td>
<td>0.1</td>
<td>8</td>
<td>100</td>
<td>計</td>
</tr>
</tbody>
</table>

「コール中中」れ

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物体重 (g)</th>
<th>1%乳酸亜塩注射量</th>
<th>注射間隔 (分)</th>
<th>「アルコール」注射量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率 (%)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>17-23</td>
<td>0.1</td>
<td>60</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td></td>
</tr>
</tbody>
</table>
第7表 「カゼオザン」前処置実験

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物種等</th>
<th>「カゼオザン」注入量（pro 10g）</th>
<th>注射間隔</th>
<th>「アルコール」注入量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率（％）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>7</td>
<td>10-15</td>
<td>0.015</td>
<td>10'</td>
<td>0.1</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>15-17</td>
<td>0.025</td>
<td>30'</td>
<td>2</td>
<td>2</td>
<td>66.6</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>20-21</td>
<td>0.04</td>
<td>3'</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>13-18</td>
<td>0.025</td>
<td>5'</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>11-17</td>
<td>0.01</td>
<td>2'30'</td>
<td>1</td>
<td>1</td>
<td>20.0</td>
</tr>
<tr>
<td>13</td>
<td>15-20</td>
<td>0.02</td>
<td>5'</td>
<td>5</td>
<td>5</td>
<td>38.5</td>
<td></td>
</tr>
</tbody>
</table>
| 34 | 1 | | 1%「コルヒチン」注入口量 | 11例中6例24時間中＝死亡
ヒレ(6)へは30時間後に死亡 | | | 計 |
| | 11 | 15-19 | 0.02 | 5' | 0.1 | 11 | 100 | 計 |
| 6 | 6 | 14-15 | 0.01 | 60' | 0.15 | 6 | 100 | 計 |
| 15 | 4 | 16-17 | 0.01 | 2'30' | 0.20 | 2'34' | 100 | |
| 5 | 5 | 17-18 | 0.01 | 2'30' | 0.20 | 2'34 | 100 | |
| 5 | 5 | 20-23 | 0.01 | 2'30' | 0.20 | 2'34 | 100 | |
| 5 | 5 | 15-16 | 注射ナス | | 0.20 | 60' | 100 | |
| 5 | 5 | 18-19 | 0.05 | 55' | 100 | |
| 5 | 5 | 20-23 | 0.05 | 55' | 100 | |
| 15 | 5 | 注射ナス | 0.20 | 55' | 100 | |
| 11 | 1 | 16-17 | 0.05 | 55' | 100 | |

第8表 葡萄糖前処置実験

<table>
<thead>
<tr>
<th>実験動物数</th>
<th>動物種等</th>
<th>10%葡萄糖注入口量（pro 10g）</th>
<th>注射間隔</th>
<th>「アルコール」注入口量</th>
<th>24時間後ノ死亡数</th>
<th>死亡率（％）</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>5</td>
<td>16-20</td>
<td>0.1</td>
<td>3'</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>16-18</td>
<td>0.1</td>
<td>8'</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0.05%「コルヒチン」注入口量</td>
<td>2</td>
<td>2</td>
<td>20.0</td>
<td>計</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6	3	17-18	0.1	1'	0.1	1	16.6		
3	3	18	0.1	3'	0	0	0	16.6	
5	5	15-18	0.1	3	0	0	0	16.6	
11	1	16-17	0.1	2'	0.15	2	2	8.3	計
12	15-20	0.1	3	0.15	3	3	16.6	計	
15	6	15-16	0.1	2'	0.20	2'25'	66.6	計	
4	20-21	0.1	2'25'	3	100				
5	23-26	0.1	2'25'	3	100				
6	6	15-17	注射ナス	0.20	4'12'	83.3	90		
14	4	20-21	0.20	4'12'	83.3				
4	23-25	0.20	4'12'	83.3	90				

73
<table>
<thead>
<tr>
<th>前処置</th>
<th>物質</th>
<th>平均死亡率</th>
<th>平均死亡時間</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>前処置群</td>
<td>対照群</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"アルコール"</td>
<td>18例</td>
<td>44.4%</td>
<td>11例</td>
</tr>
<tr>
<td>"コルヒチン"</td>
<td>11例</td>
<td>100%</td>
<td>6例</td>
</tr>
<tr>
<td>"ヒドロキシン"</td>
<td>9例</td>
<td>33.3%</td>
<td>9例</td>
</tr>
<tr>
<td>"アルコール"</td>
<td>17例</td>
<td>47%</td>
<td>11例</td>
</tr>
<tr>
<td>"コルヒチン"</td>
<td>12例</td>
<td>83.3%</td>
<td>6例</td>
</tr>
<tr>
<td>"ヒドロキシン"</td>
<td>8例</td>
<td>100%</td>
<td>9例</td>
</tr>
<tr>
<td>"乳酸"</td>
<td>"アルコール"</td>
<td>5例</td>
<td>20%</td>
</tr>
<tr>
<td>"コルヒチン"</td>
<td>8例</td>
<td>37.5%</td>
<td>6例</td>
</tr>
<tr>
<td>"ヒドロキシン"</td>
<td>13例</td>
<td>80.6%</td>
<td>13例</td>
</tr>
<tr>
<td>"カセオザン"</td>
<td>"アルコール"</td>
<td>18例</td>
<td>33.3%</td>
</tr>
<tr>
<td>"コルヒチン"</td>
<td>11例</td>
<td>100%</td>
<td>8例</td>
</tr>
<tr>
<td>"ヒドロキシン"</td>
<td>6例</td>
<td>100%</td>
<td>9例</td>
</tr>
<tr>
<td>"糖分"</td>
<td>"アルコール"</td>
<td>10例</td>
<td>20%</td>
</tr>
<tr>
<td>"コルヒチン"</td>
<td>11例</td>
<td>8.3%</td>
<td>6例</td>
</tr>
<tr>
<td>"ヒドロキシン"</td>
<td>12例</td>
<td>16.2%</td>
<td>9例</td>
</tr>
</tbody>
</table>

※ (+) 前処置＝物質中毒影響なく試験（解決）
(ー) 前処置＝物質中毒影響なく試験（中毒）
主 要 文 献

1) E. Urbach, Klin. W., Jg. 13, Nr. 40, 1923.
Untersuchungen über das Entgiftungsvermögen des Organismus
sowie seine Umstimmung.

Von

Dr. Sizuma Sato und Dr. Masao Ugai.

Eingegangen am 2. Juni 1938.

Äthylalkohol, der durch Oxydation seine Giftigkeit verliert, und Colchitin und Hydrochinon, die durch Oxydation ihre Giftigkeit verstärken, wurden zuerst normalen Mäusen gegeben, um ihre Giftigkeit durch die Merkmale der Sterblichkeit und Todesstunde zu messen. Dann wurden die obengenannten Gifte Versuchstieren gegeben, die vorher mit Thyroxin, Methylenblau, Natrium lacticum, Kaseosan und Traubenzucker behandelt worden waren. Daraufhin wurden Sterblichkeit bzw. Todesstunde mit denen der Kontrolle verglichen, um das Entgiftungsvermögen der Tiere zu erforschen.

Ergebnisse:

1) Das Entgiftungsvermögen der Mäuse gegen Alkohol wurde durch Vorbehandlung mit Thyroxin, Methylenblau, Natrium lacticum, Kaseosan oder Traubenzucker gesteigert.
2) Das Entgiftungsvermögen der Mäuse gegen Colchitin wurde durch Vorbehandlung mit Thyroxin, Methylenblau, Natrium lacticum oder Kaseosan abgeschwacht, durch die Vorbehandlung mit Traubenzucker dagegen gesteigert.

3) Das Entgiftungsvermögen der Mäuse gegen Hydrochinon wurden durch Vorbehandlung mit Thyroxin, Methylenblau abgeschwächt, durch Vorbehandlung mit Natrium lacticum, Kaseosan oder Traubenzucker aber gesteigert.

Aufgrund dieser Ergebnisse möchte Verfasser annehmen, dass das Entgiftungsvermögen der Organismen durch Vorbehandlung mit mehreren bestimmten Arzneimitteln eine Umstimmung zur Folge hat und dass dabei nicht nur die Oxydation, sondern auch andere Mechanismen beteiligt sind. (Autoreferat)