AN ADAPTIVE COST-BASED SOFTWARE REJUVENATION SCHEME WITH NONPARAMETRIC PREDICTIVE INFERENCE APPROACH

Koichiro Rinsaka Tadashi Dohi
Kobe Gakuin University Hiroshima University

(Received July 15, 2016; Revised July 10, 2017)

Abstract This paper proposes an approach to estimate an optimal software rejuvenation schedule minimizing an expected total software cost per unit time. Based on a non-parametric predictive inference (NPI) approach, we derive the upper and lower bounds of the predictive expected software cost via the predictive survival function from system failure time data, and characterize an adaptive cost-based software rejuvenation policy, from the system failure time data with a right-censored observation. In simulation experiments, it is shown that our NPI-based approach is quite useful to predict the optimal software rejuvenation time.

Keywords: Reliability, software rejuvenation, software aging, statistical estimation, adaptive policy, non-parametric predictive inference, software cost model

1. Introduction

Software dependability is one of stringent requirements for present day applications, because a huge economic loss or risk to human life can be caused by the consequences of software failure in some cases. While these requirements cannot be fulfilled in designing actual applications with non-trivial complexity, the reduction of software development cost is frequently requested in industry. This dilemma penalizes applying the classical design diversity techniques in software fault-tolerance, such as recovery block and N version programming, to the common application development. Instead, the environment diversity techniques to realize time redundancy in software operation receive considerable attention in recent years. In other words, since bug fixing is not always possible for continuously running software systems, patch release is becoming much popular to maintain software applications in operational phase. However, as reported in Gray and Siewiorek [22] and Grottke and Trivedi [23], most software failures are transient in nature and will disappear if the operation is retried later in slightly different context. These software bugs which cause transient failure are called Mandelbugs, and it is in general difficult to characterize their root origin. Among them, the aging-related bugs are frequently observed in real world, when software application executes continuously for long periods of time. The phenomenon that the aging-related bugs cause software to age due to the error conditions that accrue with time and/or load, is called software aging. Adams [3], Avritzer and Weyuker [4], Avritzer et al. [5], Castelli et al. [9], Grottke et al. [24], Tai et al. [38], Yurcik and Doss [44] report several aging phenomena in real software systems.

Software rejuvenation is a complementary approach to handle transient software failures caused by the aging-related bugs (Huang et al. [26]) which can be regarded as a preventive and proactive maintenance solution. It is one of software environment diversity techniques and involves stopping the running software occasionally, cleaning its internal state and restarting it. Typical examples of software rejuvenation are garbage collection, flushing
operating system kernel tables, reinitializing internal data structures, as well as retry, reconfiguration, and reboot of systems. Since the seminal contribution by Huang et al. [26], a number of authors concern the problem how frequent software rejuvenation is triggered, because it has a tradeoff relationship between system down cost at failure and planned down cost by preventive rejuvenation. First, Huang et al. [26] propose a simple continuous-time Markov chain (CTMC) model with four states, i.e., initial robust (clean), failure probable, rejuvenation and failure states, to describe the stochastic behavior of a telecommunication billing application. They evaluate both the system unavailability and the operating cost in steady state under the random software rejuvenation schedule. Unfortunately, it is shown in Dohi et al. [15] that their CTMC assumption does not motivate to trigger software rejuvenation. In Dohi et al. [15] and their subsequent papers (e.g. see Danjou et al. [14], Dohi et al. [16–18]), it was shown that a sufficient condition for the existence of non-trivial software rejuvenation timing is that the transition probability from failure probable state to failure state has to be strictly increasing failure rate. In the above references, some semi-Markov models to describe the stochastic behavior of the telecommunication billing application are proposed. In addition to the stochastic modeling, statistical inference of the optimal software rejuvenation schedule is a challenging issue. Danjou et al. [14] and Dohi et al. [15–18] propose non-parametric estimation algorithms based on the empirical distribution to obtain the optimal software rejuvenation schedule from the complete sample of failure time data. If a sufficient number of samples of failure time data can be obtained, then the resulting estimate of the optimal software rejuvenation schedule asymptotically converges to the real but unknown optimal solution almost surely. Recently, Zhao et al. [45] apply the accelerated life testing technique by injecting memory leaks in their experiments and examine the above non-parametric estimation methods in importance sampling simulation. Rinsaka and Dohi [34] propose another non-parametric estimation algorithm based on the kernel density estimation (Duin [19], Parzen [31], Silverman [36]) to improve the estimation accuracy of the optimal software rejuvenation schedule with a small sample data.

Apart from the time-based optimal software rejuvenation schedule, some other stochastic models have been considered in the literature. Bao et al. [6, 7], Bobbio et al. [8], Okamura et al. [29], Wang et al. [42], Xie et al. [43] develop workload-based software rejuvenation schemes. Though system parameters and resource usage strongly affect the software aging, it is pointed out that the mechanism on aging for individual software-based system has not been still clear. In other words, since the aging-related bugs are not bridged to system workload explicitly, it may be difficult to apply the workload-based software rejuvenation to tolerate transient failures completely. Vaidyanathan and Trivedi [39] propose a heuristic prediction-based software rejuvenation scheme, where the workload in future is predicted by means of linear regression model. Pfening et al. [32] consider a server-type software system with degradation as a queueing system, and formulate as the Markov decision process. Garg et al. [21] take account of the presence of system failure caused by software aging and analyze the time-based optimal software rejuvenation schedule. This model is extended latter in Okamura et al. [27–30] by introducing the workload-based rejuvenation schedule and/or a more general arrival process of transactions. van Moorsel and Wolter [40] focus on the system restart and derive the optimal restart policies to rejuvenate a software system over a finite and an infinite operational period.

In this way, considerable attention has been paid to describe the relationship between software aging and software rejuvenation scheduling. However, it is still difficult to provide a statistically meaningful estimator of the software rejuvenation schedule, because system’s failure behavior in real world is regarded as a rare event, and a sufficient number of time-
to-failure data cannot be observed in the operational phase. The accelerated life testing technique by Zhao et al. [45] will be useful under experimental environments, but is not always applicable to the operational phase of software systems. Then the key challenge is to develop a prediction-based adaptive software rejuvenation scheme. Rinsaka and Dohi [33, 35] use a non-parametric predictive inference (NPI) approach by Coolen and Yan [10] and Coolen-Schrijner and Coolen [11]. They focus on a periodic software rejuvenation model Garg et al. [20] and Suzuki et al. [37] and derive the optimal NPI-based software rejuvenation time maximizing the steady-state availability criterion. In fact, the NPI approaches have been applied to a number of reliability and maintenance problems (Coolen-Schrijner et al. [12], Coolen-Maturi and Coolen [13], Aboalkhai et al. [1, 2], Venkat et al. [41]). In this paper, we reconsider the seminal work in Dohi et al. [15], and derive the NPI-based optimal software rejuvenation policy which minimizes the expected total software cost per unit time. Our motivation to consider the cost model is to distinguish two types of down time occurred by preventive (planned) rejuvenation and system failure by introducing the cost component. Dissimilar to the fixed sample problem in Dohi et al. [15–17] and Zhao et al. [45], it predicts the one-stage look-ahead behavior of system failure and sequentially estimates the optimal software rejuvenation time in an adaptive way. Similar to Coolen-Schrijner and Coolen [11], we formulate the upper and lower bounds of the predictive expected total software cost per unit time using the predictive survival functions obtained from n system failure time data, and derive the optimal software rejuvenation policies for $(n + 1)$-st system failure. On the basis of original data together with a right-censored observation, we derive adaptive rejuvenation policies. In the simulation experiments, we carry out the sensitivity analysis of some model parameters, and show the usefulness of the adaptive NPI approach proposed in this paper.

2. Model Description

We here introduce the software rejuvenation model proposed by Dohi et al. [15], which is an extension of CTMC model by Huang et al. [26]. The model based on the semi-Markov process has the following four states:

State 0: highly robust state (normal operation state)
State 1: failure probable state
State 2: failure state
State 3: software rejuvenation state.

Here, State 1 means that the memory leakage is over a threshold or the system lapses from the highly robust state into an unstable state. Let Z be the random time interval when the highly robust state changes to the failure probable state, having the common probability distribution function $\Pr\{Z \leq t\} = F_0(t)$ with finite mean $\mu_0 (> 0)$. Just after the state becomes the failure probable state, system failure may occur with positive probability. Without loss of generality, we assume that the random variable Z is observable during the system operation (Huang et al. [26]). Let X denote the failure time from State 1, having the probability distribution function $\Pr\{X \leq t\} = F_f(t)$ and the survival function $S(t) = 1 - F_f(t)$ with finite mean $\lambda_f (> 0)$. If the system failure occurs before triggering a software rejuvenation, then the recovery operation starts immediately at that time. Otherwise the software rejuvenation is triggered. Let Y be the random repair time from the failure state, having the common probability distribution function $\Pr\{Y \leq t\} = F_a(t)$ with finite mean $\mu_a (> 0)$. Note that the software rejuvenation cycle is measured from the time instant just
Figure 1: Semi-Markovian transition diagram for a simple four-states model

after the system state makes a transition from State 0 to State 1. Denote the probability distribution function of the time to invoke the software rejuvenation and the probability distribution of the time to complete software rejuvenation by $F_r(t)$ and $F_c(t)$ (with mean $\mu_c (> 0)$), respectively. After completing the repair or the rejuvenation, the software system becomes as good as new, and the software age is initiated at the beginning of the next highly robust state. Consequently, we define the time interval from the beginning of the system operation to the next one as one cycle, and the same cycle repeats again and again.

It is noted that all the states in State 0 ~ State 3 are regeneration points. The transition diagram for Model 1 is depicted in Figure 1. If we consider the time to software rejuvenation time as a constant t_0, then it follows that

$$F_r(t) = U(t - t_0) = \begin{cases} 1 & \text{if } t \geq t_0 \\ 0 & \text{otherwise,} \end{cases} \quad (2.1)$$

where $U(\cdot)$ is the unit step function. We call $t_0 (\geq 0)$ the software rejuvenation schedule in this paper. Hence, the underlying stochastic process is a semi-Markov process with four regeneration states. Note that under the assumption that the sojourn times in all states are exponentially distributed, this model is reduced to Huang et al.’s Markov model (Huang et al. [26]). Let $c_s (> 0)$ denote the repair cost per unit time, and $c_p (> 0)$ denote the software rejuvenation cost per unit time. The expected total software cost per unit time in the steady-state is given by

$$C(t_0) = \frac{c_s \mu_a [1 - S(t_0)] + c_p \mu_c S(t_0)}{\mu_0 + \mu_a [1 - S(t_0)] + \mu_c S(t_0) + \int_{t_0}^{t_0} S(t)dt}. \quad (2.2)$$

In order to motivate to derive the optimal software rejuvenation schedule, we need to assume that $c_s > c_p$ and $c_s \mu_a > c_p \mu_c$ (see Dohi et al. [15]).

3. Nonparametric Predictive Inference

The non-parametric predictive inference (NPI) approach is a comprehensive method to estimate the optimal preventive rejuvenation schedule sequentially. Let $X_j (j = 1, \ldots, n)$ and $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ be independent and identically distributed continuous non-negative random variables and their order statistics, respectively. Similar to Coolen-Schrijner and Coolen [11], we introduce the well-known Hill’s assumptions (Hill [25]):

(A-1) Ties of the system failure time data have probability 0, i.e., $x_{(i)} \neq x_{(j)}$ given that $X_{(i)} = x_{(i)}$ for $i = 0, \ldots, n, \ j = 0, \ldots, n$ and $i \neq j$.
(A-2) Given \(x(j), \ j = 0, \ldots, n \), the probability that the next \((n+1)\)st system failure occurs during \(I_j = (x(j), x(j+1)) \) is given by \(1/(n+1) \), where \(x(0) = 0 \) and \(x(n+1) \rightarrow \infty \) (or a known upper limit of \(X_j \)), i.e., the predictive probability distribution has the mass part of \(1/(n+1) \) for \(I_j = (x(j), x(j+1)) \), \(j = 0, \ldots, n \).

More specifically when \(n \) system failure time data, \(x(1) < x(2) < \cdots < x(n) \), are observed, we obtain the predictive probability of \((n+1)\)st system failure time interval \(X_{n+1} \) by

\[
\Pr \{ X_{n+1} \in (x(j), x(j+1)) \} = \frac{1}{n+1}, \quad j = 0, \ldots, n. \tag{3.1}
\]

From Equation (3.1), when \(t_0 = x(j) \) \((j = 0, \ldots, n)\) the predictive survival function of \(X_{n+1} \) is then given by

\[
S_{X_{n+1}}(x(j)) = \frac{n-j+1}{n+1}, \quad j = 0, \ldots, n+1. \tag{3.2}
\]

It is worth noting in Equation (3.2) that the probability mass part of the survival function can be also defined only at the observation point \(x(j) \), but Hill’s assumptions do not put any further restriction in the interval \(t_0 \in (x(j), x(j+1)) \). Instead of the pointwise survival function, we consider the upper and lower bounds of predictive survival functions at an arbitrary time \(t_0 \) between successive points \((x(j), x(j+1))\). From an intuitive argument (see Figure 2), the greatest lower bound of the predictive survival function can be obtained by

\[
\underline{S}_{X_{n+1}}(x) = S_{X_{n+1}}(x(j+1)) = \frac{n-j}{n+1}, \quad x \in (x(j), x(j+1)), \quad j = 0, \ldots, n. \tag{3.3}
\]

Similarly, the least upper bound of the predictive survival function is derived by

\[
\overline{S}_{X_{n+1}}(x) = S_{X_{n+1}}(x(j)) = \frac{n-j+1}{n+1}, \quad x \in (x(j), x(j+1)), \quad j = 0, \ldots, n. \tag{3.4}
\]

We call \(\underline{S}_{X_{n+1}}(\cdot) \) and \(\overline{S}_{X_{n+1}}(\cdot) \) the predictive lower and upper survival functions of \(X_{n+1} \), respectively, provided that \(X(1) = x(1), \ X(2) = x(2), \ldots, X(n) = x(n) \) are given.
4. Optimal Software Rejuvenation Policies for X_{n+1}

4.1. Upper bound of predictive expected total software cost

In this section, the upper bound of predictive expected total software cost for $(n+1)$-st system failure time interval, X_{n+1}, is derived via the lower bound of survival function in Equation (3.3). Then we show that the optimal software rejuvenation schedule which minimizes the upper bound of predictive expected cost for X_{n+1} can be attained at one of the points $x(j)$, $j = 1, \ldots, n$. Let $\overline{C}_{X_{n+1}}(t_0)$ denote the NPI-based upper bound of predictive expected total software cost per unit time for X_{n+1}. By substituting the predictive lower survival function in Equation (3.3) into Equation (2.2), we obtain the following lemma:

Lemma 4.1.

$$\overline{C}_{X_{n+1}}(x(j)) = \frac{j c_s \mu_a + (n-j+1)c_p \mu_c}{(n+1)\mu_0 + j \mu_a +(n-j+1)\mu_c +(n-j+1)x(j)+ \sum_{l=1}^{j-1} x(l)}; \quad j = 1, \ldots, n + 1, \quad (4.1)$$

$$\overline{C}_{X_{n+1}}(t_0) = \frac{(j+1)c_s \mu_a + (n-j)c_p \mu_c}{(n+1)\mu_0 + (j+1)\mu_a +(n-j)\mu_c +(n-j)t_0+ \sum_{l=1}^{j} x(l)}, \quad t_0 \in (x(j), x(j+1)), \quad j = 0, \ldots, n. \quad (4.2)$$

As a special case of $t_0 = x(n+1) \to \infty$, the NPI-based upper bound of predictive expected total software cost is given by

$$\overline{C}_{X_{n+1}}(x(n+1)) = \frac{c_s \mu_a}{\mu_0 + \mu_a + \frac{1}{n+1} \sum_{l=1}^{n} x(l)}, \quad (4.3)$$

where

$$E[X_{n+1}] = \frac{1}{n + 1} \sum_{l=1}^{n} x(l) \quad (4.4)$$

is the lower bound of the expectation $E[X_{n+1}]$. It is obvious from Equation (3.3) that $S_{X_{n+1}}(t_0) = 0$ for $t_0 > x(n)$. Hence, the upper bound of predictive expected total software cost must be constant for $t_0 > x(n)$. Since $S_{X_{n+1}}(t_0) < S_{X_{n+1}}(x(n))$ for $t_0 > x(n)$ from Equations (4.1) and (4.2), it is found that $t_0 (> x(n))$ does not minimize the upper bound of predictive expected total software cost.

Lemma 4.2. For $t_0 \in (x(j), x(j+1))$ ($j = 0, \ldots, n - 1$), the function $\overline{C}_{X_{n+1}}(\cdot)$ is continuous and monotonically decreasing in t_0. Especially, $\overline{C}_{X_{n+1}}(\cdot)$ is left-continuous at $x(j)$ ($j = 1, \ldots, n$) and each $x(j)$ is a local minimum solution.

From Lemma 4.1 and Lemma 4.2, we obtain the following theorem on the optimal software rejuvenation policy for X_{n+1} which minimizes the upper bound of predictive expected total software cost.

Theorem 4.1. The minimum value of upper bound of predictive expected total software cost, $\overline{C}_{X_{n+1}}(\cdot)$, can be attained at one of the points $x(j)$, $j = 1, \ldots, n$.

4.2. Lower bound of predictive expected total software cost

Next, we derive the lower bound of predictive expected cost per unit time via the upper bound of survival function in Equation (3.4). Then we show that the optimal software rejuvenation schedule which minimizes the lower bound of predictive expected total software cost for \(X_{n+1} \) can be attained at one of the points \(x_{(j)} \) (\(j = 1, \ldots, n \)), where \(x_{(j)} \) is the left limit of \(x_{(j)} \). Let \(C_{X_{n+1}}(t_0) \) be the NPI-based lower bound of predictive expected total software cost. By substituting the predictive upper survival function in Equation (3.4) into the expected total software cost function in Equation (2.2), we have the following results.

Lemma 4.3.

\[
C_{X_{n+1}}(x_{(j)}) = \frac{j c_s \mu_a + (n - j + 1) c_p \mu_c}{(n + 1) \mu_0 + j \mu_a + (n - j + 1) \mu_c + (n - j + 1) x_{(j)} + \sum_{l=1}^{j} x_{(l)}}
\]

\(j = 1, \ldots, n + 1 \). \((4.5) \)

\[
C_{X_{n+1}}(t_0) = \frac{j c_s \mu_a + (n - j + 1) c_p \mu_c}{(n + 1) \mu_0 + j \mu_a + (n - j + 1) \mu_c + (n - j + 1) t_0 + \sum_{l=1}^{j} x_{(l)}}
\]

\(t_0 \in (x_{(j)}, x_{(j+1)}), \ j = 0, \ldots, n \). \((4.6) \)

Lemma 4.4. For \(t_0 \in (x_{(j)}, x_{(j+1)}) \) (\(j = 1, \ldots, n \)), the function \(C_{X_{n+1}}(\cdot) \) is continuous and monotonically decreasing in \(t_0 \). Especially, \(C_{X_{n+1}}(\cdot) \) is right-continuous at \(x_{(j)}, j = 1, \ldots, n \) and each \(x_{(j)} \) is a local minimum solution.

Theorem 4.2. The minimum value of lower bound of predictive expected total software cost, \(C_{X_{n+1}}(\cdot) \), can be attained at one of the points \(x_{(j)}, j = 1, \ldots, n \).

In the case of \(t_0 = x_{(n+1)} \to \infty \), the NPI-based lower bound of predictive expected total software cost is given by

\[
C_{X_{n+1}}(x_{(n+1)}) = \frac{j c_s \mu_a}{(n + 1) \mu_0 + (n + 1) \mu_a + \sum_{l=1}^{n+1} x_{(l)}} = 0.
\]

(4.7)

In other words, as long as the upper bound of \(x_{(n+1)} \) is infinite, the estimate of optimal software rejuvenation schedule always becomes \(t_0^* \to \infty \). In the plausible case where \(x_{(n+1)} \) is bounded and takes the value \(r \), the upper bound of \(E[X_{n+1}] \) is given by

\[
E[X_{n+1}] = \frac{1}{n+1} \left(\sum_{j=1}^{n} x_{(j)} + r \right).
\]

(4.8)

Then, comparing \(C_{X_{n+1}}(t_0^*) \) with \(C_{X_{n+1}}(r^-) \), where \(t_0^* \) is the minimizer of lower bound of predictive expected total software cost, an estimate of the software rejuvenation schedule can be determined. Even when \(r \) is bounded but unknown, it is possible to calculate a critical value \(r^* \) which satisfies \(C_{X_{n+1}}(t_0^*) = C_{X_{n+1}}(r^-) \). If \(r \leq r^* \), then the software rejuvenation schedule is given by \(t_0^* \) otherwise it is always optimal not to invoke the software rejuvenation.
Table 1: Upper and lower bounds of predictive expected total software cost for X_{5+1}

<table>
<thead>
<tr>
<th>$x(1)$</th>
<th>$x(2)$</th>
<th>$x(3)$</th>
<th>$x(4)$</th>
<th>$x(5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1288</td>
<td>2087</td>
<td>2536</td>
<td>2882</td>
<td>3402</td>
</tr>
</tbody>
</table>

$C_{X_{5+1}}(x(j))$ = 0.015480, 0.014227, 0.015549, 0.017443, 0.019387

$C_{X_{5+1}}(x(j))$ = 0.009423, 0.009267, 0.010534, 0.012076, 0.013428

4.3. Illustrative example 1

For better understanding, we give a simple example to derive the optimal software rejuvenation time. Let

$$T_{up,n+1}^* = \arg\min C_{X_{n+1}}(t_0) \quad \text{and} \quad T_{low,n+1}^* = \arg\min C_{X_{n+1}}(t_0)$$

(4.9)

denote the optimal software rejuvenation schedules corresponding to minimization of $C_{X_{n+1}}(t_0)$ and $C_{X_{n+1}}(t_0)$, respectively. Suppose that $n = 5$ ordered samples of failure times are available; 1288, 2087, 2536, 2882, 3402. The model parameters are fixed as $\mu_0 = 240$, $\mu_a = 0.5$, $\mu_c = 0.16$, $c_s = 100$, $c_p = 90$. Table 1 presents the five failure time data, and the resulting upper and lower bounds of the predictive expected total software cost, $C_{X_{5+1}}(x(j))$ and $C_{X_{5+1}}(x(j))$ for X_{5+1}. In this case, we have $T_{up,n+1}^* = T_{low,n+1}^* = x(2) = 2087$ with $C_{X_{5+1}}(2087) = 0.014227$ and $C_{X_{5+1}}(2087) = 0.009267$. The critical value of r^* is given by 14892. Figure 3 is a plot of upper and lower functions of predictive expected total software cost.

As we will show in the latter discussion, Monte Carlo simulation experiments clarify the fact that $T_{up,n+1}^*$ is almost equal to $T_{low,n+1}^*$ in many cases. Even if $T_{up,n+1}^*$ differs from $T_{low,n+1}^*$, $T_{up,n+1}^*$ can be regarded as the optimal software rejuvenation schedule from a viewpoint of an absolute error average against the theoretical minimum cost. Rinsaka and Dohi [33] investigate the above NPI-based software rejuvenation policies under a different dependability criterion and apply the real data analysis of a web server system.

![Figure 3: Upper and lower predictive expected total software cost functions](image-url)
Table 2: Upper and lower bounds of predictive expected total software cost for X_{6+1}

<table>
<thead>
<tr>
<th>$x(1)$</th>
<th>$x(2)$</th>
<th>$x(3)$</th>
<th>$x(4)$</th>
<th>$x(5)$</th>
<th>$x(6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1288</td>
<td>1812</td>
<td>2087</td>
<td>2536</td>
<td>2882</td>
<td>3402</td>
</tr>
</tbody>
</table>

$C_{X_{6+1}}(x(j))$ 0.014496 0.014298 0.015581 0.016799 0.018379 0.020023 $C_{X_{6+1}}(x(j))$ 0.009423 0.009854 0.011303 0.012202 0.013473 0.014603

5. Adaptive Software Rejuvenation Prediction

We here consider an adaptive software rejuvenation schedule for $(n+2)$-nd system failure. More precisely, after the optimal preventive rejuvenation schedule $T^*_{n+1} (= T^*_{up,n+1})$ for $(n+1)$-st system failure is triggered, we predict the next software rejuvenation schedule for $(n+2)$-nd system failure from $n+1$ system failure data or a right-censored observation at $T^*_{up,n+1}$. This problem has not been considered in Rinsaka and Dohi [33] and gives a useful prediction scheme of the software rejuvenation.

5.1. Case of system failure before $T^*_{up,n+1}$

When the $(n+1)$-st system failure occurs before $T^*_{up,n+1}$, the results obtained in the section 4 can be used as $n := n+1$. In Example 1, we have $T^*_{5+1} = 2087$ for X_{5+1}. Suppose that 6th failure occurs at 1812. Table 2 presents the six failure time data, and the upper and lower bounds of the predictive expected total software cost, $C_{X_{n+1}}(x(j))$ and $C_{X_{n+1}}(x(j))$ for X_{6+1}. From Table 2, we have $T^*_{up,6+1} = T^*_{low,6+1} = x(2) = 1812$ with $C_{X_{6+1}}(1812) = 0.014298$ and $C_{X_{6+1}}(1812^-) = 0.009854$. Hence, acquisition of the 6th failure time data hastens the optimal software rejuvenation schedule.

5.2. Case of rejuvenation at $T^*_{up,n+1}$

In the case where $(n+1)$-st system failure time is greater than $T^*_{up,n+1}$, namely the software system is preventively rejuvenated at time $T^*_{up,n+1}$, the relevant data set consists of the n original system failure times together with a right-censored observation. Note that the right-censoring time is always equal to one of the n system failure times. We assume that the software rejuvenation was actually taken place at an $x(k)$, $k = 1,\ldots,n$, when the upper predictive expected total software cost function was used. Then we consider an adaptive software rejuvenation schedule for $(n+2)$-nd system failure time interval, X_{n+2}. Following Coolen and Yan [10], the predictive survival function for the random lifetime X_{n+2} is given by

$$S_{X_{n+2}}(x(j)) = \frac{n+2-j}{n+2}, \quad j = 0,\ldots,k, \quad (5.1)$$

$$S_{X_{n+2}}(x(j)) = \frac{(n+2-k)(n+1-j)}{(n+2)(n+1-k)}, \quad j = k+1,\ldots,n+1. \quad (5.2)$$

Similar to Section 4, the lower and upper survival functions at an arbitrary time between successive points $(x(j), x(j+1))$ can be defined by

$$S_{X_{n+2}}(x) = S_{X_{n+2}}(x(j+1)) = \frac{n+1-j}{n+2}, \quad x \in (x(j), x(j+1)), \quad j = 0,\ldots,k-1, \quad (5.3)$$

$$S_{X_{n+2}}(x) = S_{X_{n+2}}(x(j+1)) = \frac{(n+2-k)(n-j)}{(n+2)(n+1-k)}, \quad x \in (x(j), x(j+1)), \quad j = k,\ldots,n, \quad (5.4)$$
software cost function in Equation (2.2). Let the predictive lower survival functions in Equations (5.3) and (5.4) into the expected total software cost for \(X \)

\[
\mathbb{S}_{X_{n+2}}(x) = S_{X_{n+2}}(x_j) = \frac{n+2-j}{n+2}, \\
x \in (x_{(j)}, x_{(j+1)}) , \ j = 0, \ldots, k, \tag{5.5}
\]

\[
\mathbb{S}_{X_{n+2}}(x) = S_{X_{n+2}}(x_j) = \frac{(n+2-k)(n+1-j)}{(n+2)(n+1-k)}, \\
x \in (x_{(j)}, x_{(j+1)}) , \ j = k+1, \ldots, n. \tag{5.6}
\]

Let \(\overline{C}_{X_{n+2}}(x_{(j)}) \) and \(\underline{C}_{X_{n+2}}(x_{(j)}) \) denote the NPI-based upper and lower bounds of predictive expected total software cost for \(X_{n+2} \). The following lemma is derived by substituting the predictive lower survival functions in Equations (5.3) and (5.4) into the expected total software cost function in Equation (2.2).

Lemma 5.1. The upper bound of predictive expected total software cost per unit time for \(X_{n+2} \) is given by

\[
\overline{C}_{X_{n+2}}(x_{(j)}) = \frac{jc_s \mu_a + (n+2-j)c_p \mu_c}{(n+2)\mu_0 + j \mu_a + (n+2-j)\mu_c + (n+1-j)x_{(j)} + \sum_{l=1}^{j} x_{(l)}}, \\
t_0 = x_{(j)}, \ j = 1, \ldots, k, \tag{5.7}
\]

\[
\overline{C}_{X_{n+2}}(x_{(j)}) = \frac{\Phi_1(x_{(j)})}{\Psi_1(x_{(j)})}, \ t_0 = x_{(j)}, \ j = k+1, \ldots, n+1, \tag{5.8}
\]

\[
\overline{C}_{X_{n+2}}(t_0) = \frac{(1+j)c_s \mu_a + (n+1-j)c_p \mu_c}{(n+2)\mu_0 + (1+j) \mu_a + (n+1-j)\mu_c + \sum_{l=1}^{j} x_{(l)} + (n+1-j)t_0}, \\
t_0 \in (x_{(j)}, x_{(j+1)}) , \ j = 0, \ldots, k-1, \tag{5.9}
\]

\[
\overline{C}_{X_{n+2}}(t_0) = \frac{\Phi_2(t_0)}{\Psi_2(t_0)}, \ t_0 \in (x_{(j)}, x_{(j+1)}) , \ j = k, \ldots, n, \tag{5.10}
\]

where

\[
\Phi_1(x_{(j)}) = (jn+2j-k-jk)c_s \mu_a + (n+2-k)(n+1-j)c_p \mu_c, \tag{5.11}
\]

\[
\Psi_1(x_{(j)}) = (n+2)(n+1-k)\mu_0 + (jn+2j-k-jk)\mu_a + (n+2-k)(n+1-j)\mu_c \\
+ (n+2-k) \sum_{l=1}^{j} x_{(l)} - \sum_{l=1}^{k-1} x_{(l)} + (n+2-k)(n-j)x_{(j)}, \tag{5.12}
\]

\[
\Phi_2(t_0) = (jn+2j-k-jk)c_s \mu_a + (n+2-k)(n-j)c_p \mu_c, \tag{5.13}
\]

\[
\Psi_2(t_0) = (n+2)(n+1-k)\mu_0 + (jn+2j-k-jk)\mu_a + (n+2-k)(n-j)\mu_c \\
+ (n+2-k) \sum_{l=1}^{j} x_{(l)} - \sum_{l=1}^{k-1} x_{(l)} + (n+2-k)(n-j)t_0. \tag{5.14}
\]
The lower bound of predictive expected total software cost per unit time for \(X_{n+2} \) is also obtained by substituting the upper survival functions in Equations (5.5) and (5.6) into the expected total software cost function in Equation (2.2).

Lemma 5.2. The lower bound of predictive expected total software cost per unit time for \(X_{n+2} \) is given by

\[
C_{X_{n+2}} (x(j)) = \frac{j c_s \mu_a + (n + 2 - j) c_p \mu_c}{(n + 2) \mu_0 + j \mu_a + (n + 2 - j) \mu_c + (n + 2 - j) x(j) + \sum_{l=1}^{j} x(l)}, \quad t_0 = x(j), \quad j = 1, \ldots, k,
\]

\[C_{X_{n+2}} (x(k+1)) = \frac{\Phi_3 (x(k+1))}{\Psi_3 (x(k+1))}, \quad t_0 = x(k+1), \tag{5.15}\]

\[
C_{X_{n+2}} (x(j)) = \frac{\Phi_4 (x(j))}{\Psi_4 (x(j))}, \quad t_0 = x(j), \quad j = k + 2, \ldots, n + 1, \tag{5.16}\]

\[
C_{X_{n+2}} (t_0) = \frac{\Phi_5 (t_0)}{\Psi_5 (t_0)}, \quad t_0 \in (x(j), x(j+1)), \quad j = 0, \ldots, k, \tag{5.17}\]

\[
C_{X_{n+2}} (t_0) = \frac{\Phi_6 (t_0)}{\Psi_6 (t_0)}, \quad t_0 \in (x(j), x(j+1)), \quad j = k + 1, \ldots, n, \tag{5.18}\]

where

\[
\Phi_3 (x(k+1)) = (n + 2 + kn - k^2) c_s \mu_a + (n + 2 - k)(n - k) c_p \mu_c, \tag{5.20}\]

\[
\Psi_3 (x(k+1)) = (n + 2)(n + 1 - k) \mu_0 + (n + 2 + kn - k^2) \mu_a + (n + 2 - k)(n - k) \mu_c + (n + 1 - k)^2 x(k+1) + (n + 1 - k) \sum_{l=1}^{k+1} x(l), \tag{5.21}\]

\[
\Phi_4 (x(j)) = (jn + 2j - k - jk) c_s \mu_a + (n + 2 - k)(n + 1 - j) c_p \mu_c, \tag{5.22}\]

\[
\Psi_4 (x(j)) = (n + 2)(n + 1 - k) \mu_0 + (jn + 2j - k - jk) \mu_a + (n + 2 - k)(n + 1 - j) \mu_c + (n + 1 - k) \sum_{l=1}^{j} x(l) + \sum_{l=k+1}^{j} x(l) + (n + 2 - k)(n + 1 - j) x(j), \tag{5.23}\]

\[
\Phi_5 (t_0) = j c_s \mu_a + (n + 2 - j) c_p \mu_c, \tag{5.24}\]

\[
\Psi_5 (t_0) = (n + 2) \mu_0 + j \mu_a + (n + 2 - j) \mu_c + \sum_{l=1}^{j} x(l) + (n + 2 - j) t_0, \tag{5.25}\]

\[
\Phi_6 (t_0) = (jn + 2j - k - jk) c_s \mu_a + (n + 2 - k)(n + 1 - j) c_p \mu_c, \tag{5.26}\]

\[
\Psi_6 (t_0) = (n + 2)(n + 1 - k) \mu_0 + (jn + 2j - k - jk) \mu_a + (n + 2 - k)(n + 1 - j) \mu_c + (n + 1 - k) \sum_{l=1}^{j} x(l) + \sum_{l=k+1}^{j} x(l) + (n + 2 - k)(n + 1 - j) t_0. \tag{5.27}\]
Table 3: Upper and lower bounds of predictive expected total software cost for \(X_{5+2}\)

<table>
<thead>
<tr>
<th>(x(1))</th>
<th>(x(2))</th>
<th>(x(3))</th>
<th>(x(4))</th>
<th>(x(5))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1288</td>
<td>2087</td>
<td>2536</td>
<td>2882</td>
<td>3402</td>
</tr>
<tr>
<td>(\overline{C}{X{5+2}}(x_{(j)}))</td>
<td>0.014496</td>
<td>0.012831</td>
<td>0.014348</td>
<td>0.016359</td>
</tr>
<tr>
<td>(\overline{C}{X{5+2}}(x_{(j)}^-))</td>
<td>0.009423</td>
<td>0.008805</td>
<td>0.009697</td>
<td>0.011374</td>
</tr>
</tbody>
</table>

In a fashion similar to the argument on \(X_{n+1}\), we show that \(t_0 > x(n)\) does not minimize the upper bound of the predictive expected total software cost for \(X_{n+2}\).

Lemma 5.3. (a) For \(t_0 \in (x(j), x(j+1))\) \((j = 0, \ldots, n-1)\), the function \(\overline{C}_{X_{n+2}}(\cdot)\) is continuous and monotonically decreasing in \(t_0\). Especially, \(\overline{C}_{X_{n+2}}(\cdot)\) is left-continuous at \(x(j)\), \(j = 1, \ldots, n\) and each \(x(j)\) is a local minimum solution.

(b) For \(t_0 \in (x(j), x(j+1))\) \((j = 0, \ldots, n)\), the function \(\overline{C}_{X_{n+2}}(\cdot)\) is continuous and monotonically decreasing in \(t_0\). Especially, \(\overline{C}_{X_{n+2}}(\cdot)\) is right-continuous at \(x(j)\) \((j = 1, \ldots, n)\) and each \(x(j)\) is a local minimum solution.

Theorem 5.1. (a) The minimum value of upper bound of predictive expected total software cost per unit time, \(\overline{C}_{X_{n+2}}(\cdot)\), for \(X_{n+2}\) can be attained at one of the points \(x(j)\) \((j = 1, \ldots, n)\).

(b) The minimum value of lower bound of predictive expected cost per unit time, \(\underline{C}_{X_{n+2}}(\cdot)\), for \(X_{n+2}\) can be attained at one of the points \(x(j)^-\) \((j = 1, \ldots, n)\).

5.3. Illustrative example 2

Let \(T_{\text{up},n+2} = \text{argmin} \overline{C}_{X_{n+2}}(t_0)\) and \(T_{\text{low},n+2} = \text{argmin} \underline{C}_{X_{n+2}}(t_0)\)

\begin{align}
T_{\text{up},n+2}^* &= \text{argmin} \overline{C}_{X_{n+2}}(t_0) \quad \text{and} \quad T_{\text{low},n+2}^- = \text{argmin} \underline{C}_{X_{n+2}}(t_0) \tag{5.28}
\end{align}

denote the optimal software rejuvenation schedules corresponding to minimization of \(\overline{C}_{X_{n+2}}(t_0)\) and \(\underline{C}_{X_{n+2}}(t_0)\), respectively. In Example 1, the optimal software rejuvenation schedule has been estimated as \(T_{\text{up},5+1}^* = x(2) = 2087\). Suppose that the \((n+1)\)-st system failure time is right-censored at \(T_{\text{up},5+1}^* = 2087\). Table 3 presents the five failure time data, and the upper and lower bounds of the predictive expected total software cost for \(X_{5+2}\). From Table 3, we have \(T_{\text{up},5+2}^* = T_{\text{low},5+2}^- = x(2) = 2087\) with \(\overline{C}_{X_{5+2}}(2087) = 0.012831\) and \(\underline{C}_{X_{5+2}}(2087^-) = 0.008805\). Hence, the acquisition of right-censored time data does not change the optimal software rejuvenation schedule for \(X_{n+2}\). This will be verified again in simulation experiments in Section 6. From the simulation experiments we will show that \(T_{\text{up},n+2}^*\) works better in terms of an absolute error average with the theoretical minimum expected cost.

6. Simulation Experiments

Through simulation experiments, we compare the NPI-based optimal software rejuvenation schedule with the theoretically optimal solution, and verify the validity of the proposed NPI-based adaptive approach. Suppose that the random variable, \(X\), obeys the Weibull distribution:

\[F_X(t) = 1 - e^{-(t/\theta)^\gamma}, \quad \gamma > 0, \quad \theta > 0. \tag{6.1} \]

In Table 4 we summarize the parameter setting, theoretical optimal software rejuvenation schedule and its associated minimum expected cost.
accords with lower one. It is observed from Table 6 that these two estimates are in agreement.

Table 4: Parameter setting, theoretical optimal software rejuvenation schedule and its associated minimum expected cost

<table>
<thead>
<tr>
<th>Case</th>
<th>γ</th>
<th>θ</th>
<th>λ₀</th>
<th>SD[X]</th>
<th>μ₀</th>
<th>μₚ</th>
<th>s₀</th>
<th>c₀</th>
<th>cₚ</th>
<th>t₀</th>
<th>C(t₀)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>1.5</td>
<td>2215.46</td>
<td>2000.00</td>
<td>1357.93</td>
<td>240.00</td>
<td>0.50</td>
<td>0.16</td>
<td>100</td>
<td>90</td>
<td>1573.74</td>
<td>0.0203108</td>
</tr>
<tr>
<td>Case II</td>
<td>2.0</td>
<td>2256.76</td>
<td>2000.00</td>
<td>1045.45</td>
<td>240.00</td>
<td>0.50</td>
<td>0.16</td>
<td>100</td>
<td>90</td>
<td>1240.06</td>
<td>0.0173332</td>
</tr>
<tr>
<td>Case III</td>
<td>4.0</td>
<td>2206.53</td>
<td>2000.00</td>
<td>561.09</td>
<td>240.00</td>
<td>0.50</td>
<td>0.16</td>
<td>100</td>
<td>90</td>
<td>1266.56</td>
<td>0.0122037</td>
</tr>
</tbody>
</table>

Table 5: Simulation results

<table>
<thead>
<tr>
<th>Case</th>
<th>T_{up,n+1}</th>
<th>C_{up,n+1}</th>
<th>T_{up,n+2}</th>
<th>C_{up,n+2}</th>
<th>T_{low,n+1}^*</th>
<th>C_{low,n+1}</th>
<th>T_{low,n+2}^*</th>
<th>C_{low,n+2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>n = 10</td>
<td>(t₀ = 1240.06, C(t₀) = 0.0173332)</td>
<td>Mean</td>
<td>2167.7</td>
<td>0.0196079</td>
<td>2029.6</td>
<td>0.0196473</td>
<td>2378.5</td>
</tr>
<tr>
<td>Median</td>
<td>1801.0</td>
<td>0.0191770</td>
<td>1687.5</td>
<td>0.0191055</td>
<td>1822.7</td>
<td>0.0150950</td>
<td>1757.7</td>
<td>0.0153550</td>
</tr>
<tr>
<td>SD</td>
<td>1364.3</td>
<td>4.674E-03</td>
<td>1293.8</td>
<td>4.506E-03</td>
<td>1671.8</td>
<td>3.672E-03</td>
<td>1682.0</td>
<td>3.610E-03</td>
</tr>
<tr>
<td>Case I : n = 100</td>
<td>Mean</td>
<td>1708.8</td>
<td>0.0196407</td>
<td>1693.4</td>
<td>0.0196443</td>
<td>1717.4</td>
<td>0.0191915</td>
<td>1705.4</td>
</tr>
<tr>
<td>Median</td>
<td>1612.7</td>
<td>0.0195700</td>
<td>1600.4</td>
<td>0.0195790</td>
<td>1603.9</td>
<td>0.0191305</td>
<td>1595.6</td>
<td>0.0191360</td>
</tr>
<tr>
<td>SD</td>
<td>573.2</td>
<td>1.585E-03</td>
<td>568.3</td>
<td>1.578E-03</td>
<td>656.0</td>
<td>1.532E-03</td>
<td>644.4</td>
<td>1.545E-03</td>
</tr>
<tr>
<td>Case I : n = 200</td>
<td>Mean</td>
<td>1660.2</td>
<td>0.0198271</td>
<td>1652.7</td>
<td>0.0198295</td>
<td>1658.0</td>
<td>0.0196036</td>
<td>1650.9</td>
</tr>
<tr>
<td>Median</td>
<td>1595.8</td>
<td>0.0198100</td>
<td>1588.0</td>
<td>0.0198160</td>
<td>1589.5</td>
<td>0.0195820</td>
<td>1585.0</td>
<td>0.0195925</td>
</tr>
<tr>
<td>SD</td>
<td>448.7</td>
<td>1.140E-03</td>
<td>446.0</td>
<td>1.137E-03</td>
<td>547.1</td>
<td>1.129E-03</td>
<td>540.6</td>
<td>1.126E-03</td>
</tr>
</tbody>
</table>

Table 5 shows the simulation results, where 10,000 simulations were performed for each case. We can observe from Table 5 that the means and medians of estimated optimal software rejuvenation schedules, T_{up,n+1} and T_{low,n+1}, for X_{n+1} are greater than the theoretical solution t₀. As the number of failure time data increases, the means and the medians of estimated optimal preventive rejuvenation schedules gradually approach to t₀, while the standard deviations (SDs) of T_{up,n+1} and T_{low,n+1} become smaller. For X_{n+2}, the means and medians of T_{low,n+2} and T_{up,n+2} also tend to become larger than the theoretical solution. Similar results as for X_{n+1} can be observed about the SDs of T_{low,n+2} and T_{up,n+2}. We can also observe from Table 5 that the mean and the median of T_{low,n+2} are closer to t₀ than T_{low,n+1}.

Table 6 shows the number of times that the upper preventive rejuvenation schedule accords with lower one. It is observed from Table 6 that these two estimates are in agreement...
Table 6: Number of times that upper schedule accords with lower one

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>100</th>
<th>200</th>
<th>10</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>8385</td>
<td>9670</td>
<td>9830</td>
<td>8444</td>
<td>9776</td>
<td>9896</td>
</tr>
<tr>
<td>Case II</td>
<td>8775</td>
<td>9595</td>
<td>9700</td>
<td>9202</td>
<td>9817</td>
<td>9874</td>
</tr>
<tr>
<td>Case III</td>
<td>8948</td>
<td>9563</td>
<td>9746</td>
<td>9460</td>
<td>9772</td>
<td>9863</td>
</tr>
</tbody>
</table>

Table 7: Absolute error averages of upper and lower expected total software cost

<table>
<thead>
<tr>
<th>n</th>
<th>$\Delta_{up,n+1}$</th>
<th>$\Delta_{up,n+2}$</th>
<th>$\Delta_{low,n+1}$</th>
<th>$\Delta_{low,n+2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>n = 10</td>
<td>3.746E-03</td>
<td>3.617E-03</td>
<td>5.344E-03</td>
</tr>
<tr>
<td></td>
<td>n = 100</td>
<td>1.399E-03</td>
<td>1.392E-03</td>
<td>1.573E-03</td>
</tr>
<tr>
<td></td>
<td>n = 200</td>
<td>9.978E-04</td>
<td>9.950E-04</td>
<td>1.081E-03</td>
</tr>
<tr>
<td>Case II</td>
<td>n = 10</td>
<td>2.921E-03</td>
<td>2.799E-03</td>
<td>4.128E-03</td>
</tr>
<tr>
<td></td>
<td>n = 100</td>
<td>1.107E-03</td>
<td>1.101E-03</td>
<td>1.261E-03</td>
</tr>
<tr>
<td></td>
<td>n = 200</td>
<td>7.976E-04</td>
<td>7.960E-04</td>
<td>8.733E-04</td>
</tr>
<tr>
<td>Case III</td>
<td>n = 10</td>
<td>1.774E-03</td>
<td>1.668E-03</td>
<td>2.316E-03</td>
</tr>
<tr>
<td></td>
<td>n = 100</td>
<td>5.961E-04</td>
<td>5.937E-04</td>
<td>7.115E-04</td>
</tr>
</tbody>
</table>

Table 8: Number of right-censored observations in 10,000 simulations

<table>
<thead>
<tr>
<th>n</th>
<th>10</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case I</td>
<td>4545</td>
<td>5216</td>
<td>5333</td>
</tr>
<tr>
<td>Case II</td>
<td>6104</td>
<td>7125</td>
<td>7252</td>
</tr>
<tr>
<td>Case III</td>
<td>7932</td>
<td>8815</td>
<td>8874</td>
</tr>
</tbody>
</table>

in many cases, and a rate in agreement for X_{n+2} tends to become greater than that for X_{n+1}. Table 7 presents the absolute error averages of lower and upper expected total software cost, where, for example, $\Delta_{up,n+1}$ means the absolute error average of the upper predictive expected total software cost for X_{n+1} against the theoretical optimal solution. We can observe from Table 7 that $\Delta_{up,n+1}$ and $\Delta_{up,n+2}$ are smaller than $\Delta_{low,n+1}$ and $\Delta_{low,n+2}$, respectively. Hence, $T_{up,n+1}$ and $T_{up,n+2}$ are the better as the optimal software rejuvenation schedules from a viewpoint of the absolute error average against the theoretical optimal solution. We can also observe that $\Delta_{up,n+1} > \Delta_{up,n+2}$ for all cases. Therefore, our adaptive preventive rejuvenation schedule can estimate the expected total software cost with higher accuracy.

Table 8 shows the number of right-censored observations in 10,000 simulations, where $T_{n+1} = T_{up,n+1}$ is used for optimal software schedule for X_{n+1}. As the shape parameter of the Weibull distribution becomes larger, or as the number of data becomes larger, the number of times of software rejuvenation becomes larger. We show in Table 9 the number of times that optimal preventive rejuvenation schedule is increasing or decreasing. It is observed that the right-censored observation for X_{n+1} does not change the next preventive rejuvenation schedule. In the case where the system failure time is observed, on the other hand, the next schedule may not change or may change in both directions.
Table 9: Number of times that optimal software rejuvenation schedule is increasing or decreasing

<table>
<thead>
<tr>
<th>Case</th>
<th>$T_{up,n+1} < T_{up,n+2}^*$</th>
<th>$T_{up,n+1} > T_{up,n+2}^*$</th>
<th>$T_{up,n+1} = T_{up,n+2}^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 10$</td>
<td>$n = 100$</td>
<td>$n = 200$</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4545</td>
<td>5216</td>
<td>5333</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6104</td>
<td>7125</td>
<td>7252</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7932</td>
<td>8815</td>
<td>8874</td>
</tr>
</tbody>
</table>

7. Conclusions

In this paper, we have developed the NPI-based adaptive software rejuvenation schedule which minimizes the predictive expected cost per unit time. Under the Hill’s assumptions, we have derived the optimal software rejuvenation policies for $(n+1)$-st system failure. Based on the n system failure time data together with the right-censored observation, we have adaptively derived the optimal software rejuvenation policies for $(n+2)$-nd system failure. Through simulation experiments, it has been found that the NPI-based software rejuvenation policy can reduce the absolute error averages of the predictive expected total software cost against the theoretically optimal solution. This result implies the usefulness of our adaptive non-parametric predictive inference approach proposed in this paper.

References

Koichiro Rinsaka
Faculty of Business Administration
Kobe Gakuin University
1-1-3 Minatojima Chuo-ku
Kobe 650-8586, Japan
E-mail: rinsaka@ba.kobegakuin.ac.jp