Effects of Long-term Administration of *Garcinia cambogia* extract on Visceral Fat Accumulation in Humans: A Placebo-controlled Double Blind Trial

Kohsuke HAYAMIZU*1, Yuri ISHII*1, Izuru KANEKO*1, Manzhen SHEN*1, Hiroyuki SAKAGUCHI*1, Yasuhide OKUHARA*1, Norihiro SHIGEMATSU*1, Shigeru MIYAZAKI*2 and Hiroyuki SHIMASAKI*3

*1 Central Laboratory, FANCL Corporation (12-13 Kamishinano, Totuka-ku, Yokohama 244-0806, JAPAN)
*2 Department of Internal Medicine, Tokyo Teishin Hospital (2-14-23 Fujimi, Chiyoda-ku, Tokyo 102-8798, JAPAN)
*3 Department of Biochemistry, Teikyo University School of Medicine (2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, JAPAN)

Edited by I. Sugimoto, Nisshin Oil Mills, and accepted May 10, 2001 (received for review April 17, 2001)

Abstract: (-)-Hydroxy citric acid (HCA), an active ingredient extracted from the rind of the Indian fruit *Garcinia cambogia* inhibits ATP-citrate lyase and is used for anti-obesity treatment. This study was conducted to examine the long-term effects of *G. cambogia* extracts on body fat accumulation in humans who are obese or obese class 1 (body mass index from 25 to 35 kg/m²). A total of 40 subjects were randomly randomized to either a *G. cambogia* (n=20, 1000 mg of HCA per day) or a placebo (n=20) group. The treatment period was 8 weeks. Each was subjected to computed tomography (CT) scan at the umbilical level before and after the treatment period, and blood samples taken to measure the clinical laboratory data every 4 weeks. As for a higher visceral fat area (VFA) in the subjects (with an initial VFA over 90 cm²), both the VFA and VFA/SFA (subcutaneous fat area) ratio in the *G. cambogia* group significantly decreased, compared to the placebo group (p<0.01 and p<0.05, respectively). Triacylglycerol was also reduced significantly in higher VFA subjects in the *G. cambogia* group, compared to the initial levels (p=0.05), but there were no significant differences between the groups in loss of body weight and the waist-hip ratio. No adverse effect was observed throughout the test period. In conclusion, *G. cambogia* extract is useful for reducing body fat accumulation, especially visceral fat accumulation.

Key words: *Garcinia*, CT scan, Visceral fat, obesity, triacylglycerol

１緒言

ガルシニアは、マンゴスチンと類縁のオトギリソウ科植物で、その果実は、東南アジアでスパイスや辛辛料として使用され、長い食後効を有する食品である。ガルシニア属植物の中でも *Garcinia cambogia*, *Garcinia indica* の果皮には、(-)-ヒドロキシケエン酸（以下HCAと略）が豊富に含まれる（1）。HCAは、醣質が脂肪に代謝される際の代謝路上の酵素であるATP-ケエン酸リアーゼ（EC 4.1.3.8）の阻害活性を示すことが知られている（2-5）。欧米においては、HCAが持つATP-ケエン酸リアーゼ阻害活性に着目した研究が行われ、HCAを含有するガルシニアエキスを肥満者に経口摂取させると、体重減少、脂質代謝改善効果が確認されたことが報告されている（6-8）。現在、我国では、栄養成分の過剰摂取による肥満、および肥満に起因する生活習慣病の増加が懸念されている。特に日本人の場合、欧米人と比べて軽度の肥満者が多いが、軽度であっても肥満に起因する健康障害が起こりやすいという民族的特徴の出ている（9-11）。近年、CT画像による体内脂肪分布の測定が可能となったため、脂肪量の部位と肥満の関連が詳細に検討されている。特に内臓脂肪の蓄積が肥満合併症と

Corresponding author: Kohsuke HAYAMIZU
いわれてきた疾病の大きな要因であるとされており（12, 13），腹部 CT 検査で内臓脂肪面積 100 cm² 以上を内臓脂肪型肥満の診断基準としている（14）。肥満解消には，適度の運動と栄養バランスがとれた食事が最も重要なものであるが，これらの補給にいわゆる栄養補助食品を使用する事も手段の一つである。欧米では既に，ガルシニアエキスの肥満者を対象としたヒト試験において，体重減少，脂質代謝異常の改善などの効果が報告されており（5-8），抗肥満目的にガルシニアエキスが使用されている。一方本邦においては，ガルシニアエキスに対する詳細な検証が含まれ報告されていない。従って，日本人の肥満に対し，脂肪蓄積分布状態の変化と共に，脂肪蓄積に対する効果と安全性を医学的に検証することは，社会的にも極めて重要な検討課題であると考える。このような観点から，本研究においては，ガルシニアエキスを含有的の錠剤を，食事制限していない肥満傾向のヒトに対し長期摂取させ，脂肪蓄積に及ぼす効果を，プラセボを比較対照とした二重盲検により検討した。

2 試 験

2-1 対 象

本試験は，医療法人社団 明光会 竹内病院および医療法人社団 明人会 田島病院において 2000 年 9 月～2000年 12 月にかけて実施された。本試験は実施に先立ち，両医療機関の臨床審査委員会において審議され承認を得た。また，被験者には研究の主旨を十分説明し，ヘルシング宣言の精神に則り同意書を文書で得て実施した。

対象の選択条件は，性別は問わないが，年齢は 20～65歳に，BMI が 25～35である事を条件に募集を行い，2週間の前観察期間において，BMI に大きな変動の無い者（±0.35以内）とした。また，下記に該当する被験者は対象から除外した。

(1) 二次性肥満症を有する者
(2) 糖尿病患者
(3) 薬物アレルギーを持つ者
(4) 既に，妊産していると思われる女性。試験期間中に妊娠する可能性のある女性
(5) 体重あるいは体脂肪に影響を及ぼすと判断される医薬品，または食品を摂取している者
(6) 肝，腎，心，血液循環系に障害を有する者
(7) その他，担当医師が不適当と判断した者

2-2 被験物質

被験物質は，ガルシニア果実の乾燥果皮の熱水抽出物（ガルシニアエキス）を 185.2 mg 含み，鉄剤としてセルロース，デキストリン，植物油脂末などからなる 1錠あたり 270.0 mg の鉄剤である。被験物質中の HCA は 1錠中に 111.1 mg 含まれる。また，プラセボ錠はガルシニアエキスの代わりにセルロースを用いて作成し，外観，重量において識別不能な鉄剤を用いた。

2-3 試験方法

試験は二重盲検法を採用し，ガルシニア群（G群）およびプラセボ群（P群）の 2群に分け，各 5名ずつ 10名分を 1組として無作為に割り付けた。摂取は，2週間の前観察期間前後，ガルシニア錠またはプラセボ錠を，1錠，および食事前 3錠，1日 9錠を8週間摂取させた。すなわちガルシニア摂取群（G群）は1日あたりガルシニアエキス 166.8 mg，HCA にして 1000 mg を摂取した。各調査項目および調査時期について以下に示す。空腹時採血および身体測定は前観察開始日（摂取開始2週間前（±2日）），摂取開始日（±2日），摂取開始4週目（±2日）および摂取開始8週目（摂取終了時（±2日）の計4回にわたって来院時に実施した。採血前の食事は 21時までに終了し，その翌日の採血までは飲食を禁止した。また，飲酒に関しては採血前の2日間を禁酒期間として，採血後，血液学的検査（赤血球数，血色素量，ヘモグロビン濃度，血小板数，血液生化学的検査（GOT，GPT，γ-GTP，LDH，BUN，クレアチニン，ケトン体，トリグリセリド，遊離脂肪酸，総コレステロール，HDLコレステロール，LDLコレステロール，糖代謝，血清インスリン（二抗体法）の測定を行った。身体測定は身長，体重，ウエスト周り長，ヒップ周り長，体脂肪率（インピーダンス法）を測定した。

腹部 CTスキャンは摂取開始日および摂取開始8週目（摂取終了時）の計2回行った。腹部 CTスキャンは横断面を撮影し，内臓脂肪面積（VFA），皮下脂肪面積（SFA）を画像処理により算出した。

被験者には被験物質の摂取状況，毎日の食事量，飲酒量，運動量を，体脂肪率を日誌に記入させた。また，試験期間中には特に食事量，運動量の規定は行わないが，できるだけ一定に保つよう指導をした。

2-4 統計学的処理

検査データは平均値±標準誤差で表した。検定は両群間の比較を t-test により，各群内における摂取前後の変化を paired t-test を用いて行い，有意水準は両側 5%以下とした。なお，解析は有効性に関する項目については，被験者全員を解析対象とした場合と，摂取前 VFA 値が 90 cm²以上の被験者（以下高 VFA 者とする）のみを解析対象とした場合の 2通りで行った。高 VFA 者の条件は，本試験の目的が内臓脂肪型肥満の予防を目的としているため，いかなる境界値を設定するかは最終的に 90 cm²以上とした。被験者背景および安全性に関する項目については，被験者全員を解析対象とした。
3 結 果

3.1 被験者背景

G 群、P 群合わせて 42 名の同意を取得し試験を開始したが、2 例がスクリーニング時の血液検査で本試験の柴
外基準に抵触したため参加不可と判断された。従って、評価対象者数は 40 例で試験を実施した。本試験に参加
した被験者の背景を Table 1 に示す。両群間において性
別、年齢、BMI、W/H 比、肥満度など背景因子に偏りは
なかった。

3.2 臀部 CT 像での脂肪量の変動

3.2.1 全被験者における結果

Fig. 1 に全被験者における CT スキャンによる脂肪分
布の推移と検定結果を示した。VFA、SFA、共に、両群
間および各群内に有意な差は見られなかった。VFA/
SFA 比（V/S 比）は、群間比較では有意な差は認められ
ないものの、群内比較では VFA のみ摂取前 0.40 ± 0.06、
摂取後 0.36 ± 0.05、平均減少 0.04 と有意に減少した（p
< 0.05）。

3.2.2 高 VFA 群における結果

Fig. 2 に高 VFA 群における結果を示す。摂取後
VFA 値は G 群 97.3 ± 5.3 cm²、P 群 127.2 ± 7.9 cm²
となり、両群間に有意な差が見られた（p < 0.01）。また、
群内比較では G 群のみ摂取前 112.1 ± 5.4 cm²、摂取後
97.3 ± 5.3 cm²、平均減少 14.8 cm² と有意な減少が見
られたが（p < 0.01）、P 群では有意な変動は見られな
かった。なお、図には示していないが、両群における
VFA の推移を変動率で解析を行っても実測データ同
様、高 VFA 群では、両群間で有意な差が認められ（G 群
：87.2 ± 3.9 %、P 群：104.2 ± 5.3 %、p < 0.05）、群内比
較でもやはり G 群のみ有意な差が見られた（平均減少率
12.8 %、p < 0.01）。Fig. 3 は被験者摂取前後の腹部
CT 像で得られた VFA の値を、横軸に摂取前の値、縦軸
に摂取後の値をプロットした散布図である。対角線の上
半分にプロットされたものは摂取前に VFA が増
加した例、下半分にプロットされたものは VFA が減少
した例である。この図から分かるように、摂取前 VFA
が高い例では G 群の方が VFA の減少が大きい事がわ
かり、特に高 VFA 者においては群間の差が明らかに
になっている。以上の事より、ガルシニアエキス摂取高
VFA 者において有意に内臓脂肪量を減らす事が認めら
れた。

一方 SFA では、群間比較、群内比較ともに有意な変
動は認められなかった（Fig. 2 参照）。V/S 比では、両群
間で有意な差が認められ（G 群：0.49 ± 0.05、P 群：
0.72 ± 0.09、p < 0.05）、群内比較では G 群のみ摂取前
0.58 ± 0.06、摂取後 0.49 ± 0.05、平均減少 0.04 と有意
に減少した（p < 0.01）（Fig. 2 参照）。両群における V/
S 比の推移を変動率で解析を行っても実測データ同様、
両群間で有意な差が認められ（G 群：85.0 ± 4.0 %、P
群：104.9 ± 5.9 %、p < 0.05）、群内比較でもやはり G
群のみ有意な差が見られた（平均減少率：15.0 %、p
< 0.01）（データ省略）。

Fig. 4 に代表的な 1 例の腹部脂肪 CT 像を示した。被
験者は 29 歳男性、摂取前 VFA 137.3 cm²、SFA 246.4
cm²、V/S 比 0.56 であったが、摂取 8 週目では VFA
110.4 cm²、SFA 237.9 cm²、V/S 比 0.46 に減少した。

3.3 身体計測値の変動

Table 2 に身体計測値の結果を示した。全被験者にお
いて、体重、BMI、体脂肪率、W/H 比において両群間で
有意な差は認められなかった。また、高 VFA 者におい
てもこれらの項目で両群間に有意な差は認められなかっ

Table 1 Characteristics of Subjects.

<table>
<thead>
<tr>
<th>All samples</th>
<th>Placebo group</th>
<th>Samples of VFA ≥ 90 cm²</th>
<th>Placebo group</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n = 20)</td>
<td>(n = 20)</td>
<td>(n = 11)</td>
<td>(n = 7)</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>10</td>
<td>Men 7</td>
<td>Men 6</td>
</tr>
<tr>
<td>Women</td>
<td>10</td>
<td>Women 4</td>
<td>Women 1</td>
</tr>
<tr>
<td>Age (years)</td>
<td>37.1 ± 2.8</td>
<td>36.5 ± 2.4</td>
<td>39.9 ± 3.9</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>75.6 ± 2.3</td>
<td>73.3 ± 2.4</td>
<td>76.3 ± 2.7</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>164.8 ± 2.4</td>
<td>162.0 ± 2.4</td>
<td>165.8 ± 3.2</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.9 ± 0.4</td>
<td>27.8 ± 0.4</td>
<td>27.8 ± 0.4</td>
</tr>
<tr>
<td>Body fat ratio (%)</td>
<td>31.2 ± 1.6</td>
<td>30.6 ± 1.3</td>
<td>29.2 ± 2.3</td>
</tr>
<tr>
<td>Waist circumference (cm)</td>
<td>88.6 ± 1.7</td>
<td>86.0 ± 1.7</td>
<td>89.2 ± 1.3</td>
</tr>
<tr>
<td>Hip circumference (cm)</td>
<td>102.1 ± 1.1</td>
<td>101.4 ± 1.0</td>
<td>101.6 ± 1.2</td>
</tr>
<tr>
<td>Waist/Hip ratio</td>
<td>0.87 ± 0.02</td>
<td>0.85 ± 0.01</td>
<td>0.88 ± 0.01</td>
</tr>
</tbody>
</table>

Values are Means ± S.E.
VFA = visceral fat area
Fig. 1 Effects of *Garcinia cambogia* on Body Fat Areas at the Level of the Umbilicus by CT Scan in All Samples.

Values are means ± S.E.

Significantly different from the value at the end of control period, *paired t-test p<0.05.*

Fig. 2 Effects of *Garcinia cambogia* on Body Fat Areas at the Level of the Umbilicus by CT Scan in Samples of VFA ≥90 cm².

Values are means ± S.E.

Significantly different from placebo group *p<0.05, **p<0.01.

Significantly different from the value at the end of control period, **paired t-test p<0.01.
3-4 血清脂質値の変動

Table 2 に総コレステロール、HDL-コレステロール、LDL-コレステロール、トリグリセリド、遊離脂肪酸の結果を示した。これらの項目については全被験者および高 VFA 者において両群間に有意な差は認められなかった。群内比較では全被験者において G 群にトリグリセリド値の減少傾向が見られ（p=0.09）、さらに高 VFA 者では G 群に、摂取前 154.8±16.8 mg/dl、摂取 8 週後 125.4±15.2 mg/dl、平均減少値 29.5 mg/dl と有意な減少が認められた（p=0.05）。

3-5 他の血液検査結果

Table 3 に他の血液検査データを示した。摂取前後で G 群で有意に減少した検査項目は赤血球数、血色素量、ヘマトクリット値であったが、いずれも摂取前の値±10%以内の軽微な変動であった。また、観察期間の測定値と比べると有意変動とは認められず、明らかに異常変動ではないと判断された。P 群では赤血球数、血色素量に変動が認められたが、これも±2%と異常変動とは認められなかった。その他、肝機能、腎機能、糖代謝に関連する項目については有意な変動を認めなかった。また、ケトン体価が上昇した者が G 群 2 例、P 群 1 例と認められたが、いずれも軽微であり臨床上問題なしへ担当医により判断された。

3-6 安全性

試験実施中の問診において G 群、P 群ともに副作用の訴えがあったが、本被験食品との因果関係がないと判断された。また、臨床検査値で、臨床上問題となるケースは両群ともに報告されなかった。

4 考察

肥満は脂質組織に脂質が過剰に蓄積された状態であるが、近年、糖尿病、高血圧症、高血圧症、動脈硬化症などの生活習慣病と肥満の関連が報告されている。これまでも肥満の程度と健康障害の合併数を調べた報告では、BMI など身体計測によるものが多くなかったが、近年では CT スキャンを用いて、脂肪の蓄積部位と生活習慣病の発症と
Table 2 Effects of *Garcinia cambogia* on Body Weight, Body Mass Index, Body Fat Ratio, Waist/ Hip Ratio and Lipid Metabolism in Subjects.

<table>
<thead>
<tr>
<th></th>
<th>Garcinia group</th>
<th></th>
<th>Placebo group</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 week (n = 20)</td>
<td>4 week (n = 20)</td>
<td>8 week (n = 20)</td>
<td>0 week (n = 20)</td>
</tr>
<tr>
<td>Body weight (kg)</td>
<td>75.6±2.3</td>
<td>75.9±2.5</td>
<td>75.6±2.4</td>
<td>73.2±2.4</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.9±0.4</td>
<td>28.0±0.4</td>
<td>27.9±0.4</td>
<td>27.8±0.4</td>
</tr>
<tr>
<td>Body fat ratio (%)</td>
<td>31.8±1.4</td>
<td>31.5±1.4</td>
<td>31.3±1.5</td>
<td>31.0±1.2</td>
</tr>
<tr>
<td>Waist/Hip ratio</td>
<td>0.87±0.02</td>
<td>0.87±0.02</td>
<td>0.87±0.02</td>
<td>0.85±0.01</td>
</tr>
<tr>
<td>Triacylglycerol (mg/dL)</td>
<td>131.7±13.0</td>
<td>134.3±15.9</td>
<td>115.4±12.3</td>
<td>108.5±14.5</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>209.2±8.5</td>
<td>206.7±7.4</td>
<td>211.3±9.3</td>
<td>205.4±6.7</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>55.2±3.1</td>
<td>55.3±3.8</td>
<td>58.5±3.9</td>
<td>54.3±3.2</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>136.2±6.8</td>
<td>134.3±5.6</td>
<td>136.1±6.9</td>
<td>134.1±5.9</td>
</tr>
<tr>
<td>Free fatty acid (mEq/L)</td>
<td>0.61±0.06</td>
<td>0.58±0.05</td>
<td>0.52±0.04</td>
<td>0.57±0.05</td>
</tr>
</tbody>
</table>

samples of VFA≥90 cm²

<table>
<thead>
<tr>
<th></th>
<th>0 week (n = 11)</th>
<th>4 week (n = 11)</th>
<th>8 week (n = 11)</th>
<th>0 week (n = 7)</th>
<th>4 week (n = 7)</th>
<th>8 week (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (kg)</td>
<td>76.2±2.6</td>
<td>76.9±2.8</td>
<td>76.0±2.6</td>
<td>77.9±4.7</td>
<td>78.3±4.7</td>
<td>78.5±4.9</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>27.7±0.4</td>
<td>28.0±0.4</td>
<td>27.7±0.4</td>
<td>27.8±0.9</td>
<td>27.9±0.9</td>
<td>28.0±0.9</td>
</tr>
<tr>
<td>Body fat ratio (%)</td>
<td>30.0±2.0</td>
<td>30.0±2.0</td>
<td>29.4±2.0</td>
<td>27.8±1.7</td>
<td>27.8±1.8</td>
<td>28.2±1.6</td>
</tr>
<tr>
<td>Waist/Hip ratio</td>
<td>0.88±0.01</td>
<td>0.88±0.01</td>
<td>0.87±0.01</td>
<td>0.89±0.02</td>
<td>0.88±0.02</td>
<td>0.88±0.02</td>
</tr>
<tr>
<td>Triacylglycerol (mg/dL)</td>
<td>154.8±16.8</td>
<td>167.0±22.6</td>
<td>125.4±15.2</td>
<td>134.6±31.2</td>
<td>163.6±37.6</td>
<td>161.9±30.8</td>
</tr>
<tr>
<td>Total cholesterol (mg/dL)</td>
<td>217.7±13.6</td>
<td>205.0±12.1</td>
<td>216.3±13.9</td>
<td>200.9±9.4</td>
<td>198.0±8.4</td>
<td>197.7±10.8</td>
</tr>
<tr>
<td>HDL-cholesterol (mg/dL)</td>
<td>51.8±3.4</td>
<td>48.4±3.0</td>
<td>54.9±3.7</td>
<td>49.3±4.4</td>
<td>49.6±4.9</td>
<td>49.4±4.6</td>
</tr>
<tr>
<td>LDL-cholesterol (mg/dL)</td>
<td>143.5±9.9</td>
<td>133.8±8.4</td>
<td>143.1±9.0</td>
<td>133.5±9.8</td>
<td>121.3±8.7</td>
<td>127.0±10.6</td>
</tr>
<tr>
<td>Free fatty acid (mEq/L)</td>
<td>0.66±0.09</td>
<td>0.64±0.08</td>
<td>0.61±0.04</td>
<td>0.61±0.07</td>
<td>0.56±0.06</td>
<td>0.57±0.04</td>
</tr>
</tbody>
</table>

Values are Means±S.E. HDL = high-density lipoprotein; LDL = low-density lipoprotein; VFA = visceral fat area

Significantly different from the value at the end of control period, *p<0.1, **p<0.05.

の関連が詳細に研究されている(14)。ROC曲線解析を用いた合併症のマーカーとしての因子を割り出す研究では、VFA 80〜90 cm²のレベルから感受性、特異度とともに高くなると報告されており(14)、生活習慣病の予防を目的とした抗肥満の研究においてCTスキャンの役割は大きいと考えられる。ところで、肥満の原因は摂取エネルギーが消費エネルギーを上回った結果であると考えられている。摂取エネルギーとして脂肪が体脂肪蓄積に関与している事は事実であるが、糖質もまた余剰分は脂肪へ変換され蓄積を促進する。特に本邦においても、糖質からのエネルギー摂取が多く、糖質由来の余剰エネルギーがコントロールが肥満対策として有効であると考えられる。

これまでガルシニアを用いた抗肥満試験は、国内外においていくつか報告されているが、その主効果項目は体重を含めた身体計測であった（6-8, 15, 16）。本試験は、ガルシニアに含まれるHCAの作用メカニズムを積極的に主効果項目とするため、脂肪蓄積分布を指標として二重盲検試験により行った。有効性の評価は被験者全員および摂取前VFAが90 cm²以上の被験者を対象とした2通の解析を行った。日本肥満学会肥満症診断基準検討委員会による内蔵脂肪型肥満の診断基準は男女ともにVFAが100 cm²以上であるが、本試験では生活習慣病予防を目的とするため、いわゆる境界域と思われる範囲まで広げて解析を行った。この結果、G群とP群でのHCAの挙動が異なり、特に高VFA群では、G群の方が有意にVFA値が減少した。また、高VFA群はG群11例、P群7例であるが、このVFA値検定の検出力は87%以上であり、例数は十分であったと考える。摂取前VFA値が両者で若干異なるため、摂取前値を基準に変動率でも解析を行っているが、結果は同様に有意であった。一方、SFA値に関しては両群ともに大きな変動は見られなかった。また、V/S比に関しては、VFAの結果が反映されており、高VFA群においてP群に比べ、G群の方が有意に下がっていた。ガルシニアに含まれるHCAはATP産生アシーブの阻害活性を持つ事から、余剰糖質由来の脂肪蓄積を抑制すると考えられる。

Kenoらは、内蔵脂肪蓄積への寄与、脂肪摂取よりも糖質摂取の方が大きい事をラットを用いた実験で報告している（17）。本試験ではVFA値のみが減少を示したが、この点からHCAは、糖質由来の脂肪蓄積を抑制し、その結果、内蔵脂肪が減少したと考えられる。

身体計測項目として、体重、BMI、体脂肪率、W/H比
<table>
<thead>
<tr>
<th></th>
<th>0 week (n=20)</th>
<th>4 week (n=20)</th>
<th>8 week (n=20)</th>
<th>0 week (n=20)</th>
<th>4 week (n=20)</th>
<th>8 week (n=20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White blood cells (×10³/μL)</td>
<td>6207±349</td>
<td>6211±467</td>
<td>6487±502</td>
<td>6223±407</td>
<td>6172±373</td>
<td>6133±442</td>
</tr>
<tr>
<td>Red blood cells (×10³/μL)</td>
<td>490.1±8.8</td>
<td>483.8±8.7</td>
<td>479.9±9.0*</td>
<td>488.2±8.0</td>
<td>487.5±9.1</td>
<td>492.3±8.2*</td>
</tr>
<tr>
<td>Hemoglobin (g/dL)</td>
<td>14.8±0.3</td>
<td>14.6±0.3</td>
<td>14.5±0.3*</td>
<td>14.6±0.4</td>
<td>14.6±0.4</td>
<td>14.8±0.4*</td>
</tr>
<tr>
<td>Hematocrit (%)</td>
<td>44.7±0.8</td>
<td>44.3±0.8</td>
<td>43.5±0.9*</td>
<td>44.1±0.9</td>
<td>44.1±1.0</td>
<td>43.9±0.9</td>
</tr>
<tr>
<td>Platelets (×10³/μL)</td>
<td>26.3±0.9</td>
<td>26.9±1.0</td>
<td>26.9±0.9</td>
<td>27.2±1.1</td>
<td>28.0±1.3</td>
<td>28.2±1.3</td>
</tr>
<tr>
<td>Hemobiochemistry and endocrinology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOT (IU/L)</td>
<td>27.4±2.5</td>
<td>26.9±2.3</td>
<td>26.4±2.1</td>
<td>26.6±2.1</td>
<td>25.0±1.5</td>
<td>26.4±2.1</td>
</tr>
<tr>
<td>GPT (IU/L)</td>
<td>34.1±4.8</td>
<td>33.8±3.6</td>
<td>32.7±3.9</td>
<td>36.8±5.3</td>
<td>32.9±4.3</td>
<td>36.5±5.4</td>
</tr>
<tr>
<td>γ-GTP (IU/L)</td>
<td>33.1±4.2</td>
<td>34.9±4.5</td>
<td>32.9±4.6</td>
<td>42.5±9.3</td>
<td>40.9±6.6</td>
<td>43.2±9.6</td>
</tr>
<tr>
<td>LDH (IU/L)</td>
<td>368.3±14.1</td>
<td>355.0±11.3</td>
<td>353.4±11.6</td>
<td>355.2±16.3</td>
<td>360.5±15.5</td>
<td>362.1±16.6</td>
</tr>
<tr>
<td>Blood urea nitrogen (mg/dL)</td>
<td>12.7±0.6</td>
<td>12.2±0.5</td>
<td>13.7±0.7</td>
<td>12.3±0.7</td>
<td>13.0±0.7</td>
<td>12.9±0.5</td>
</tr>
<tr>
<td>Creatinine (mg/dL)</td>
<td>0.89±0.03</td>
<td>0.87±0.03</td>
<td>0.86±0.03</td>
<td>0.91±0.04</td>
<td>0.87±0.03</td>
<td>0.88±0.04</td>
</tr>
<tr>
<td>Glucose (mg/dL)</td>
<td>90.6±0.2</td>
<td>91.4±2.7</td>
<td>91.2±3.1</td>
<td>92.5±2.8</td>
<td>92.7±2.7</td>
<td>93.3±2.4</td>
</tr>
<tr>
<td>Insulin (μU/mL)</td>
<td>9.0±0.6</td>
<td>10.3±0.8</td>
<td>9.7±0.9</td>
<td>8.9±0.9</td>
<td>11.2±1.3</td>
<td>9.6±1.0</td>
</tr>
<tr>
<td>Acetoacetic acid (μmol/L)</td>
<td>26.3±3.9</td>
<td>24.8±4.7</td>
<td>27.3±6.5</td>
<td>30.7±9.9</td>
<td>23.4±5.2</td>
<td>30.0±6.3</td>
</tr>
<tr>
<td>3-Hydroxybutyric acid (μmol/L)</td>
<td>53.6±10.8</td>
<td>58.0±14.8</td>
<td>55.5±17.9</td>
<td>70.5±26.2</td>
<td>58.0±19.8</td>
<td>56.0±12.8</td>
</tr>
<tr>
<td>Total ketone body (μmol/L)</td>
<td>79.9±14.6</td>
<td>82.7±19.2</td>
<td>82.8±24.2</td>
<td>101.2±36.1</td>
<td>81.4±24.9</td>
<td>86.0±19.0</td>
</tr>
</tbody>
</table>

Values are Means ± S.E.

Significantly different from the value at the end of control period, *p<0.01, *p<0.05.
リスクを軽減させることに極めて有用であると考えられた。
今後は本試験で得られた結果に基づき、さらにガルシニアエキスの生活習慣病発症におよぼす影響について検討を行いたいと考える。

5 総括

BMI25以上の成人男女40名を対象に、ガルシニアエキスの脂肪代謝への影響を、プラセボを対照とした二重盲検法により検討した。摂取量は1日あたりHCAとして1000mgを1日3回に分けて毎食前摂取させ、8週間連続摂取とした。試験期間中にCTスキャン、身体計測および臨床検査を実施し、脂肪分布、体重・体脂肪率、脂質代謝の変化について以下のよう結果を得た。

1）腹部CT画像から算出した内臓脂肪面積（VFA）は、高VFA者（VFA≥90cm²）において、ガルシニアエキス摂取群にプラセボ群に比べて有意な減少が認められた。また、内臓脂肪面積/皮下脂肪面積比において、ガルシニアエキス群は有意に低下し、その低下は高VFA者のほうが著しかった。

2）体重、BMI、体脂肪率に関しては有意な変化は見られなかった。ウエスト/ヒップ比は減少傾向が観察された。

3）血清脂質項目ではガルシニアエキス摂取群において、トリグリセリドに減少傾向が見られ、特に高VFA者では有意な低下を認めた。

4）8週間の試験期間中、ガルシニアエキスの摂取により臨床上問題となる血液検査値の変動は認められなかった。

以上の事よりガルシニアエキスは有効かつ安全であり、内臓脂肪を減少させ、肥満に起因する生活習慣病の予防に有用であると考えられた。

謝辞

本研究にあたり、ご指導と助言を賜りました、真光会竹内病院 院長 竹内明輝 氏および医療法人社団明人会 田島病院 院長 大山博司 氏に深謝いたします。

References