Positional Distribution of DHA and EPA in Phosphatidylcholine and Phosphatidylethanolamine from Different Tissues of Squids

Daisuke IGARASHI, Kenji HAYASHI and Hideki KISHIMURA

Graduate School of Fisheries Sciences, Hokkaido University
(3-1-1, Minato-cho, Hakodate-shi, Hokkaido 041-8611, JAPAN)

Edited by Y. Yamamoto, Univ. Tokyo, and accepted April 23, 2001 (received for review March 29, 2001)

Abstract: The distribution of docosahexaenoic (22:6n-3; DHA) and icosapentaenoic (20:5n-3; EPA) acids in phosphatidylcholine (PC) and/or phosphatidylethanolamine (PE) from different tissues of two species of squids, spear squid Loligo bleekeri and Pacific flying squid Todarodes pacificus, was studied. Mantles, fins, arms, and integuments of squid and liver of the former species contained small amounts of lipid (TL: 1.8-4.3% of wet weight) comprised almost entirely of PC (47.9-67.0%), sterols (14.2-32.7%), and PE (12.2-15.7%). Liver of the latter species contained copious amounts of TL (36.2%) with higher triacylglycerols (97.0%). In PC and PE from squid tissue, DHA (24.7-37.6% for PC and 7.4-25.0% for PE), EPA (6.3-18.4% and 18.9-38.8%, respectively) and palmitic acid (28.6-44.0% and 11.0-22.5%, respectively) were characteristically present. In squid tissue, except the liver, component fatty acids at sn-position 2 of PC and PE were polyunsaturated for the most part with the predominant component of DHA (71.3-78.7% for PC and 17.1-45.3% for PE) and EPA (10.9-14.4% and 37.2-58.0%, respectively). These acids at sn-position 1 of PC and PE were more saturated with palmitic (66.4-72.9% for PC and 15.9-41.6% for PE) and stearic (4.2-6.9% and 9.8-30.0%, respectively) acids. LysoPC, enriched with DHA (66.1%) and EPA (11.1%), was obtained from squid tissue PC (DHA: 36.4%, EPA: 6.7%) by Lipase M10 hydrolysis.

Key words: squid tissue, phosphatidylcholine and phosphatidylethanolamine, DHA and EPA, positional distribution, lyso phosphatidylcholine

1 結 言

イコサペンタエン酸 (20:5n-3; EPA) 及びドコサヘキサペンタエン酸 (22:6n-3; DHA) の栄養学的評価は、それらの血小板凝集能の抑制作用、血清中性脂質の低下作用、細胞内再利用能の向上作用などの生理調節機能の面から注目されており、また、脳卒中や動脈硬化の予防・治療、並びに大腸癌などの制癌効果も明らかにされつつある (1,2)。海産生物の脂質は、EPA 及び DHA を含有しており、それら多価不飽和脂肪酸の原料となる (3)。

イカ肝臓 (4,5) のトリアルキルグリセリリン (TG) 及びイカ外套膜 (5,6) のグリセロリン脂質 (PL) は、それぞれの脂質の主要成分である。イカ組織の TG 及び PL は、DHA と EPA を含有し、特に、外套膜 PL では、DHA が EPA より含有率が高い (4,6)。また、外套膜 PL は、ホスファチジルコリン (PC) 及びホスファチジルエタノールアミン (PE) が主成分であり (7,8)、特に、PC では DHA が EPA より含有率である (8)。

Deng ら (9) は、イカ皮部の DHA が高含有率であることから、イカ皮部の DHA 原料の可能性を示唆し、また、Ono ら (10) は、イカ皮部 PL を脂質分解酵素により部分加水分解して、DHA 含有率の加水分解物を調製している。しかしながら、イカ組織の PC 及び PE について、DHA と EPA の sn-1 位または sn-2 位の結合位置は、ほとんど明らかにされていない。一方、大豆及び卵由来の PC は、軽水性の炭化水素塩の非極性部と親水性の極性基の極性部を分子内に持つため、食品及び化粧品分野において天然の乳化剤等として利用される。また、大豆 PC より製造されたリゾ PC は、その強い乳化機能性から注目されている (11)。従って、DHA 及び EPA 含有のリゾ PC は、乳化性と生理活性の両機能を保持する有用物質として重要である。

本研究では、ヤリイカ及びスルメイカの外套膜・外皮部・腕部・皮部・肝臓より調製した DHA と EPA 含有
のリゾPLの食品素材化を目的とし、各組織の脂質組成、PCとPEのDHA及びEPA含有率、並びにPCとPEにおけるDHA及びEPAのsn-1位またはsn-2位の結合位置を明らかにした。また、リバーゼM10を用いて、スルメイカ臓部PCよりDHAとEPA高含有のリゾPCの調製を試みた。

2 実験
2-1 試料
実験に供したヤリイカは1999年4月に、スルメイカは1999年9月に、それぞれ北海道松前沖で漁獲された。試料は、分析まで−30℃で1ヶ月間凍結保存した。スルメイカ（外骨長：27.5±1.0 cm，体重：124.8±12.2 g）及びスルメイカ（23.4±0.5 cm，137.3±9.4 g）は各5個体を用い、それらの外套膜・鰭部・臓部・皮部・肝臓の各組織をそれぞれ合わせて、脂質抽出に供した。

2-2 脂質抽出
細切した各組織からの脂質抽出は、クロロホルム/メタノール（1:2 vol/vol）を用いたBligh and Dyer法（12）に準じて行った。

2-3 脂質分析
脂質成分の定性分析は、薄層クロマトグラフィー（TLC）により行った。中性脂質は、ケイ酸（和光純薬工業製，Wakogel B-5）を塗布したTLCにより分析した。展開溶媒は、n-ヘキサン/ジエチルエーテル/酢酸（85:15:1 vol/vol/vol）を用い、50％硫酸溶液を検出試葉として、検出脂質のTLC分析は、Kieselgel 60（Merck製）を用い、展開溶媒のクロロホルム/メタノール/水（45:50:2.5 vol/vol/vol，8.5 cm展開）及びn-ヘキサン/ジエチルエーテル（70:30 vol/vol，12.0 cm展開）で、順に二重展開させた。また、3％硫酸銅/8％リン酸溶液（13）を検出試葉とした。脂質成分の定量分析は、クロマロッド-SIIIを用いた薄層自動検出装置（TLC-FID，ヤトロン製，イアトロスキャンTH-10型）により行った。展開溶媒は、クロロホルム/メタノール/水（45:50:2.5 vol/vol/vol，7.0 cm展開）及びn-ヘキサン/ジェチルエーテル（70:30 vol/vol，10.0 cm展開）で二重展開させた。データ処理は、インテグレータ（島津製作所製，クロマトパックC-R1A型）によった。

3 結果及び考察
3-1 イカ組織の脂質含有率及び脂質組成
ヤリイカおよびスルメイカ各組織の脂質含有率と脂質組成をTable1に示す。イカ2種において、肝臓を除いた各組織の脂質含有率は、皮部（3.8〜4.3%）がやや高かったが、他の組織（鰭部：3.2%，臓部：2.1〜2.2%，外套膜：1.8〜1.9%）ではほぼ近似していた。また、肝臓の脂質含有率は、スルメイカ（36.2%）がヤリイカ（3.9%）よりも著しく高かった。

イカ2種の肝臓を除いた各組織の脂質組成において、PC（外套膜：57.4〜63.9%，臓部：54.8〜67.0%，臓部：52.4〜55.8%，皮部：47.9〜49.6%）は最多であり、ステロール（14.2〜23.7%），PE（12.2〜15.7%）がそれに次ぎ、次に、スルメイカの肝臓では、PC（53.5%）が最多であったが、TG（8.7%）も含有した。一方、スルメイカの肝臓では、PC（0.4%）は微量であり、TG（97.0%）が量であった。

イカ2種の外套膜の脂質含有率（1.8〜1.9%）は、イカ類外套膜の脂質含有率（0.7〜2.0%）（6,16,17）と近似していた。また、イカ2種の外套膜・皮部のPL組成において、PC（外套膜：72.9〜77.4%，皮部：72.1〜72.5%）が、PE（17.3〜19.9%，17.7〜19.2%）を凌駕した。
した。この傾向は、イカ類外套膜（PC：38.3～68.6；PE：11.9～31.0%）（8）及び皮部（PC：49.9%；PE：27.2%）（9）の結果と一致していた。

3.2 イカ組織のPC及びPEの脂肪酸組成

ヤリイカ及びスルメイカ各組織のPC及びPEの脂肪酸組成は、Table 2及びTable 3に示す。Table 2に示したように、ヤリイカの外套膜・鰭部・腕部・皮部のPCにおいて、主要脂肪酸はDHA（32.8～36.9%）、16:0酸（35.1～42.7%）、及びEPA（6.9～9.3%）であった。肝臓PCでは、他の組織に比較してEPA（18.4%）含有率が高く、DHA（28.8%）及び16:0酸（28.6%）含有率が低かった。また、外套膜・鰭部・腕部のPEにおいて、主要脂肪酸はEPA（28.5～31.6%）、16:0酸（21.0～22.5%）及びDHA（16.7～21.0%）であった。皮部・肝臓のPEでは、他の組織に比較してEPA（33.5～38.8%）含有率がやや高く、16:0酸（18.1～19.7%）とDHA（7.4～11.1%）含有率がやや低かった。

一方、Table 3に示したように、スルメイカの外套膜・鰭部・腕部・皮部のPCにおいて、主要脂肪酸は16:0酸（39.8～44.0%）、DHA（34.5～37.6%）、及びEPA（6.3～7.9%）であった。肝臓PCでは、他の組織に比較して16:0酸（36.1%）及びEPA（7.7%）含有率は近似していただい、DHA（24.7%）含有率は低かった。また、外套膜・鰭部・腕部のPEにおいても、主要脂肪酸はEPA（22.7～24.2%）、DHA（19.3～25.0%）、18:0酸（11.2～20.2%）及び16:0酸（11.0～18.7%）であった。皮部・肝臓のPEでは、他の組織に比較してEPA（18.9～23.6%）、16:0酸（14.3～17.0%）及び18:0酸（13.8～19.8%）含有率は近似していただい、DHA（13.2～14.1%）含有率は低かった。

3.3 イカ組織のPC及びPEのsn-1位とsn-2位の脂肪酸組成

ヤリイカ及びスルメイカ各組織のPC並びにPEのsn-1位とsn-2位の脂肪酸組成をTable 4に示す。イカ2種の外套膜・鰭部・腕部・皮部のPCのsn-2位において、DHA（ヤリイカ：71.3～72.7%、スルメイカ：72.7～78.7%）は最も含まれであり、EPA（10.9～14.4%、11.0～12.8%）がそれに次いだ。しかしながら、肝臓では、他の組織に比較してDHA（53.0%、44.4%）含有率がやや低く、また、ヤリイカでは、EPA（25.9%）含有率が高かった。

一方、イカ2種の外套膜・鰭部・腕部・皮部のPCのsn-1位において、16:0酸（ヤリイカ：66.4～72.2%、スルメイカ：71.3～72.9%）は著量であった。しかしながら、スルメイカ肝臓では、16:0酸（39.5%）及び18:0酸

Table 1 Content and Class Composition of Lipids from Different Tissues of Two Species of Squids.

<table>
<thead>
<tr>
<th>Species</th>
<th>Mantle</th>
<th>Fin</th>
<th>Arm</th>
<th>Integument</th>
<th>Liver</th>
<th>Mantle</th>
<th>Fin</th>
<th>Arm</th>
<th>Integument</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
<td></td>
</tr>
<tr>
<td>Lipid content % a)</td>
<td>1.9</td>
<td>3.2</td>
<td>2.1</td>
<td>4.3</td>
<td>3.9</td>
<td>1.8</td>
<td>3.2</td>
<td>2.2</td>
<td>3.8</td>
<td>36.2</td>
</tr>
<tr>
<td>Lipid component % b)</td>
<td>1.2</td>
<td>1.3</td>
<td>0.8</td>
<td>1.2</td>
<td>8.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.8</td>
<td>97.0</td>
</tr>
<tr>
<td>TG</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>nd</td>
<td>3.3</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>tr</td>
<td>1.1</td>
</tr>
<tr>
<td>FFA</td>
<td>20.1</td>
<td>24.6</td>
<td>27.7</td>
<td>32.7</td>
<td>15.5</td>
<td>16.9</td>
<td>14.2</td>
<td>24.3</td>
<td>30.4</td>
<td>1.5</td>
</tr>
<tr>
<td>ST</td>
<td>15.7</td>
<td>14.7</td>
<td>13.4</td>
<td>12.7</td>
<td>14.4</td>
<td>14.3</td>
<td>13.2</td>
<td>13.6</td>
<td>12.2</td>
<td>tr</td>
</tr>
<tr>
<td>PE</td>
<td>57.4</td>
<td>54.8</td>
<td>52.4</td>
<td>47.9</td>
<td>53.5</td>
<td>63.9</td>
<td>67.0</td>
<td>55.8</td>
<td>49.6</td>
<td>0.4</td>
</tr>
<tr>
<td>PC</td>
<td>2.8</td>
<td>1.9</td>
<td>2.5</td>
<td>1.9</td>
<td>1.8</td>
<td>1.8</td>
<td>1.0</td>
<td>1.5</td>
<td>0.8</td>
<td>tr</td>
</tr>
<tr>
<td>SPH</td>
<td>2.3</td>
<td>2.1</td>
<td>1.8</td>
<td>2.0</td>
<td>1.8</td>
<td>1.3</td>
<td>2.4</td>
<td>0.6</td>
<td>0.4</td>
<td>tr</td>
</tr>
<tr>
<td>Lyso PC</td>
<td>0.5</td>
<td>0.6</td>
<td>1.4</td>
<td>1.6</td>
<td>1.0</td>
<td>1.3</td>
<td>1.7</td>
<td>3.6</td>
<td>5.8</td>
<td>tr</td>
</tr>
</tbody>
</table>

a) % to wet weight basis of tissue.

b) % to total lipid and data are the averages of duplicate determinations.

TG: triacylglycerol, FFA: free fatty acid, ST: sterol, PE: phosphatidylethanolamine, PC: phosphatidylincholine, SPH: sphingomyelin, Lyso PC: lysophosphatidylincholine, tr: trace (less than 0.05%), nd: not detected.
Table 2 Fatty Acid Composition of Phosphatidycholine (PC) and Phosphatidylethanolamine (PE) from Different Tissues of Spear Squid.

<table>
<thead>
<tr>
<th>Lipid Class</th>
<th>Mantle</th>
<th>Fin</th>
<th>Arm</th>
<th>Integument</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC</td>
<td>PE</td>
<td>PC</td>
<td>PE</td>
<td>PC</td>
</tr>
<tr>
<td>14:0</td>
<td>3.9</td>
<td>1.2</td>
<td>3.6</td>
<td>0.8</td>
<td>3.5</td>
</tr>
<tr>
<td>16:0</td>
<td>35.1</td>
<td>22.5</td>
<td>42.7</td>
<td>22.3</td>
<td>38.7</td>
</tr>
<tr>
<td>18:0</td>
<td>2.0</td>
<td>5.2</td>
<td>2.0</td>
<td>6.3</td>
<td>2.0</td>
</tr>
<tr>
<td>16:1n-9</td>
<td>0.3</td>
<td>1.0</td>
<td>0.4</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>0.8</td>
<td>0.1</td>
<td>0.7</td>
<td>0.2</td>
<td>0.7</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>3.1</td>
<td>3.3</td>
<td>2.5</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>2.1</td>
<td>3.3</td>
<td>2.2</td>
<td>3.6</td>
<td>2.1</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>1.6</td>
<td>6.4</td>
<td>1.5</td>
<td>6.7</td>
<td>2.0</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>0.8</td>
<td>3.5</td>
<td>0.7</td>
<td>4.7</td>
<td>0.7</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>9.3</td>
<td>28.5</td>
<td>7.0</td>
<td>31.6</td>
<td>8.6</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>36.9</td>
<td>21.0</td>
<td>32.8</td>
<td>16.7</td>
<td>34.0</td>
</tr>
<tr>
<td>Others b)</td>
<td>4.1</td>
<td>4.0</td>
<td>3.9</td>
<td>4.1</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Table 3 Fatty Acid Composition of Phosphatidycholine (PC) and Phosphatidylethanolamine (PE) from Different Tissues of Pacific Flying Squid.

<table>
<thead>
<tr>
<th>Lipid Class</th>
<th>Mantle</th>
<th>Fin</th>
<th>Arm</th>
<th>Integument</th>
<th>Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PC</td>
<td>PE</td>
<td>PC</td>
<td>PE</td>
<td>PC</td>
</tr>
<tr>
<td>14:0</td>
<td>2.6</td>
<td>0.3</td>
<td>1.5</td>
<td>0.3</td>
<td>1.6</td>
</tr>
<tr>
<td>16:0</td>
<td>39.8</td>
<td>18.7</td>
<td>42.8</td>
<td>11.0</td>
<td>41.2</td>
</tr>
<tr>
<td>18:0</td>
<td>2.3</td>
<td>12.1</td>
<td>3.5</td>
<td>20.2</td>
<td>3.0</td>
</tr>
<tr>
<td>16:1n-9</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>0.7</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>1.6</td>
<td>1.8</td>
<td>1.5</td>
<td>1.6</td>
<td>1.3</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>1.2</td>
<td>2.1</td>
<td>1.2</td>
<td>2.3</td>
<td>1.2</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>1.2</td>
<td>8.3</td>
<td>1.3</td>
<td>7.6</td>
<td>1.7</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>0.9</td>
<td>3.9</td>
<td>0.8</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>7.9</td>
<td>23.2</td>
<td>6.7</td>
<td>24.2</td>
<td>6.7</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>37.6</td>
<td>25.0</td>
<td>36.0</td>
<td>19.3</td>
<td>36.4</td>
</tr>
<tr>
<td>Others b)</td>
<td>4.0</td>
<td>4.3</td>
<td>3.9</td>
<td>7.1</td>
<td>4.5</td>
</tr>
</tbody>
</table>

(19.5%) が主成分であった。

ヤリイカの外套膜・鰭部・腕部のPEのsn-2位では、EPA（49.2〜50.1%）とDHA（31.9〜37.8%）は高含有率であったが、皮部・肝臓では、EPA（56.7〜58.0%）は著量であり、DHA（17.1〜18.3%）及び20:4n-6酸（10.8〜13.3%）がそれに次ぎた。また、スルメイカの外套膜・鰭部・腕部のPEのsn-2位では、EPA（37.2〜42.3%）とDHA（24.9〜45.3%）は著量であり、20:4n-6酸（6.1〜15.3%）がそれに次ぎた。しかしながら、肝臓では、EPA（22.6%）、DHA（19.3%）、18:0酸（16.2%）、及び16:0酸（13.9%）が主成分であった。一方、イカ2種の各組織のPEのsn-1位において、

16:0酸（ヤリイカ：27.7〜41.6%、スルメイカ：15.9〜28.2%）と18:0酸（9.8〜17.7%、19.3〜30.0%）含有率は高く、20:1n-9酸（7.8〜12.9%、7.7〜12.0%）、EPA（8.3〜19.8%、7.8〜12.5%）、及びDHA（5.7〜8.1%、6.2〜12.9%）がそれに次ぎた。

これらの結果は、生体組織PLのsn-1位には飽和脂肪酸が、また、sn-2位には不飽和脂肪酸がそれぞれ優先的に結合する仮定（19）を支持した。なお、イカ2種のPC及びPEのsn-1位とsn-2位の脂肪酸組成比の総和の平均値は、それぞれのPC及びPEの脂肪酸組成比とほぼ近似していた。

50
<table>
<thead>
<tr>
<th>Species</th>
<th>Spear squid</th>
<th>Pacific flying squid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tissue</td>
<td>Mantle</td>
<td>Fin</td>
</tr>
<tr>
<td></td>
<td>sn-1</td>
<td>sn-2</td>
</tr>
<tr>
<td>Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:0</td>
<td>6.7</td>
<td>0.5</td>
</tr>
<tr>
<td>16:0</td>
<td>66.4</td>
<td>2.9</td>
</tr>
<tr>
<td>18:0</td>
<td>4.2</td>
<td>1.3</td>
</tr>
<tr>
<td>16:1n-9</td>
<td>0.9</td>
<td>0.3</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>1.1</td>
<td>0.4</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>3.5</td>
<td>0.6</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>2.4</td>
<td>0.1</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>2.7</td>
<td>14.4</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>3.1</td>
<td>72.7</td>
</tr>
<tr>
<td>Others<sup>a</sup></td>
<td>5.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Phosphatidylethanolamine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:0</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>16:0</td>
<td>41.6</td>
<td>2.1</td>
</tr>
<tr>
<td>18:0</td>
<td>9.8</td>
<td>1.7</td>
</tr>
<tr>
<td>16:1n-9</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>16:1n-7</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>18:1n-9</td>
<td>5.5</td>
<td>0.5</td>
</tr>
<tr>
<td>18:1n-7</td>
<td>6.8</td>
<td>0.1</td>
</tr>
<tr>
<td>20:1n-9</td>
<td>11.8</td>
<td>0.1</td>
</tr>
<tr>
<td>20:4n-6</td>
<td>1.3</td>
<td>5.6</td>
</tr>
<tr>
<td>20:5n-3</td>
<td>8.3</td>
<td>49.2</td>
</tr>
<tr>
<td>22:6n-3</td>
<td>6.3</td>
<td>37.8</td>
</tr>
<tr>
<td>Others<sup>a</sup></td>
<td>5.9</td>
<td>2.2</td>
</tr>
</tbody>
</table>

See the footnote of Table 2 for a).
3.4 DHA及びEPA含有のリゾPCの調製

イカ2種の外套膜・縫部・腕部・皮部のPLは、PC含有率が高く、また、PCのsn-2位はDHA（71.3〜78.7％）とEPA（10.9〜14.4％）を特異的に結合していた（Table 4）。そこで、スルメイカ腕部PCのsn-1位結合の脂肪酸エステルをリバーゼM10により加水分解し、DHAとEPA含有のリゾPCの調製を試みた。なお、酵素加水分解は、リゾPCの食品素材化を考慮して、反応系にエチルアルコールと蒸留水を用いた。4時間の加水分解反応において、リゾPCの生成率は76.3％であり、PC23.7％が未分解であった。加水分解生成物のリゾPC及び遊離脂肪酸の脂肪酸組成をTable 5に示す。

Table 5には示していないように、リゾPCではDHA（66.1％）は高含有率であり、EPA（11.1％）も含有した。その結果、スルメイカ腕部PC（DHA：36.4％、EPA：6.7％）と比較して、DHAとEPAは約1.7倍に濃縮された。また、リゾPC及び遊離脂肪酸の脂肪酸組成は、それぞれスルメイカ腕部PCのsn-2位及びsn-1位の脂肪酸組成（Table 4）に近似していた。このことにより、リバーゼM10はPCのsn-1位結合の脂肪酸エステルを優先的に加水分解することが確かめられた（20）。

4総括

ヤリイカ及びスルメイカの外套膜・縫部・腕部・皮部の脂質は、PCが最多成分であり、ステロールとPEがそれに次いでいた。PC及びPEは、DHAとEPA含有に、特に、PCではDHAがEPAを凌駕した。PCのsn-2位の脂肪酸組成において、DHA及びEPAは主成分であり、DHAがEPAより高含有率であった。また、PEのsn-2位の脂肪酸組成において、EPAとDHAは主要成分であり、特に、ヤリイカではEPAがDHAより含有率が高かった。

リバーゼM10により、スルメイカ腕部PCを加水分解して調製したリゾPCにおいて、DHA及びEPAの濃縮が確認された。結局、ヤリイカ及びスルメイカの外套膜・縫部・腕部・皮部は、DHAとEPAを含有するPC及びリゾPCの食品素材原料として適当であることが示された。

References

Table 5 Fatty Acid Composition of Lysophosphatidylcholine (LysophPC) and Free Fatty Acids (FFA) Obtained from Arm Phosphatidylcholine of Pacific Flying Squid by Lipase M10 Hydrolysis.

<table>
<thead>
<tr>
<th></th>
<th>LysophPC</th>
<th>FFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>0.7</td>
<td>2.6</td>
</tr>
<tr>
<td>16:0</td>
<td>6.7</td>
<td>64.2</td>
</tr>
<tr>
<td>18:0</td>
<td>2.0</td>
<td>6.1</td>
</tr>
<tr>
<td>16:1-n-9</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>16:1-n-7</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>18:1-n-9</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>18:1-n-7</td>
<td>0.7</td>
<td>1.7</td>
</tr>
<tr>
<td>20:1-n-9</td>
<td>0.3</td>
<td>3.2</td>
</tr>
<tr>
<td>20:4-n-6</td>
<td>1.4</td>
<td>0.3</td>
</tr>
<tr>
<td>20:5-n-3</td>
<td>11.1</td>
<td>2.9</td>
</tr>
<tr>
<td>22:6-n-3</td>
<td>66.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Others</td>
<td>7.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Data are the averages of duplicate determinations. See the footnote of Table 2 for a.