Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
Oils and Fats
The Role of Genomics and Biotechnology in Achieving Global Food Security for High-Oleic Vegetable Oil
Richard F. Wilson
ジャーナル フリー

2012 年 61 巻 7 号 p. 357-367


Health related concerns for dietary ‘trans-fat’ in the U.S. have mediated a significant decline in the use of hydrogenated vegetable oils in edible applications. Oils having a natural abundance of oleic acid provide many functional properties that are derived from partial hydrogenation of polyunsaturated oils. However, the long term agronomic production capacity of existing high-oleic oil crops to replace hydrogenated oil ingredients is not sustainable. Although improvements are expected in processing technology, genetic modification of seed composition offers the most promising tactic to increase the overall supply of high-oleic commodity oils. Genetic enhancement of oleic acid concentration has been demonstrated experimentally in nearly every oilseed. Private companies have launched production of genetically enhanced oleic acid cultivars such as: Nexera™ Omega-9 canola and Omega-9 sunflower oils. The E. I. du Pont de Nemours and Company plans commercial production of Plenish™ high-oleic soybeans in 2012. The Monsanto Co. plans commercial production of Vistive-Gold™ low-saturated high-oleic soybeans possibly as early as 2013. These ‘new’ high-oleic oilseeds must not only exhibit superior oil quality but also sequentially improved yield potential. Genetic maps that help breeders identify, locate and track useful genes will facilitate accomplishment of that goal. However, a reference sequence map in soybean is the only available chromosome scale assembly of an oilseed genome. Knowledge of genome structure enables technological advances that help increase soybean yielding ability, improve crop protection against biotic stresses, and reveal alleles for genes that mediate expression of quality traits. Led by soybean, genetically enhanced high-oleic vegetable oils that now are becoming commercially available may capture greater than 40% of the domestic consumption of vegetable oil in the U.S. by 2020. This innovation in oilseed technology is a positive step toward ensuring global food security for high-oleic vegetable oils.

© 2012 公益社団法人 日本油化学会