Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957
Detergents, Surfactants, Interface and Colloid
Highly Viscoelastic Reverse Wormlike Micellar Systems from a Mixture of Lecithin, Polyglycerol Fatty Acid Monoesters, and an Oil
Kaname HashizakiMiko ImaiShuhei YakoHitomi TsusakaYuichi SakanishiYoshihiro SaitoMakiko Fujii
Author information
JOURNAL FREE ACCESS

2017 Volume 66 Issue 9 Pages 997-1007

Details
Abstract

We report new lecithin reverse wormlike micelles with high viscoelasticity formed using lecithin/polyglycerol fatty acid monoester (PGLFA)/oil systems. In this study, the influence of the amphiphilicity (i.e., hydrophile-lipophile balance, HLB) of PGLFA on the phase behavior and rheological properties of reverse wormlike micelles was investigated in detail. PGLFAs with degrees of polymerization of polyglycerol varying between 6-40 and constituent fatty acids with chains between 6-18 carbon atoms long were used. Partial phase diagrams of the lecithin/PGLFA/n-decane systems indicated that the appropriate PGLFA could change the lecithin/oil solution into a highly viscoelastic solution comprising reverse wormlike micelles. Rheological measurements showed that all systems that formed reverse wormlike micelles exhibited an unusual phenomenon called “shear-thickening”. Furthermore, reverse wormlike micelles grew as the PGLFA concentration increased and the zero-shear viscosity (η0) of the solution rapidly increased. Our results indicate that the magnitude of the maximum η0 depends on the degree of polymerization of the constituent polyglycerol in the PGLFA, while the size of the reverse micellar region and the highly viscous region in the phase diagram depends on the HLB value of the PGLFA.

Content from these authors
© 2017 by Japan Oil Chemists' Society
Previous article Next article
feedback
Top