Fish Oil and Primrose Oil Suppress the Progression of Alzheimer’s Like Disease Induced by Aluminum in Rats

Sahar Y. Al-Okbi¹*, Shaimaa E Mohammed¹, Enas S.K. Al-Siedy¹, and Naglaa A. Ali²

¹ Nutrition and Food Sciences Department, National Research Centre, Cairo, EGYPT
² Hormones Department, Medical Research Division, National Research Centre, Cairo, EGYPT

Abstract: The role of fish oil, primrose oil and their mixture in ameliorating the changes in Alzheimer’s like model was evaluated in rats. Primrose oil and primrose/fish oil mixture fatty acids composition was assessed by gas chromatography. The rat experiment consisted of 5 groups; the first fed on balanced diet as control normal (CN); the other four groups treated with intraperitoneal aluminum lactate and consumed dyslipidemic diet; one group served as control Alzheimer’s like disease (CA) while the other three groups (test groups) received daily oral dose from primrose oil, fish oil and primrose/fish oil mixture separately for 5 weeks. Results showed primrose oil and primrose/fish oil mixture to contain gamma linolenic acid as 9.15 and 4.3% of total fatty acids, respectively. Eicosapentaenoic and docosahexaenoic were present as 10.9 and 6.5 %, respectively in the oil mixture. Dyslipidemia and increased erythrocyte sedimentation rate (ESR), plasma butyrylcholinesterase (BChE), brain malondialdehyde (MDA) and NO with decrease in plasma magnesium, brain catalase, reduced glutathione, body weight gain and brain weight were demonstrated in CA compared to CN. Brain histopathology and immuno-histochemistry showed neuronal degeneration and neurofibrillary tangles with elevated myeloperoxidase and nuclear factor-kappa B in CA compared to CN. The tested oils demonstrated neuro-protection reflected in the variable significant improvement of biochemical parameters, immuno-histochemistry and brain histopathology. Primrose/fish oil mixture was superior in reducing ESR, brain MDA, plasma activity of BChE and brain histopathological changes along with elevating plasma magnesium. Primrose/fish oil mixture and fish oil were more promising in improving plasma high density lipoprotein cholesterol (HDL-C) than primrose. Fish oil was the most efficient in improving plasma total cholesterol (T-C), low density lipoprotein cholesterol and T-C/HDL-C. Primrose/fish oil mixture and primrose oil were superior in elevating brain catalase compared to fish oil. Other parameters were equally improved by the different oil treatments. Primrose oil, fish oil and their mixture reduced the progression of Alzheimer’s disease in rats with superiority to primrose/fish oil mixture.

Key words: fish oil, primrose oil, Alzheimer’s disease, rats, aluminum

1 Introduction

Aluminum (Al) is a neurotoxic element implicated in the pathology and progression of Alzheimer’s disease (AD). Al deposits in the brain and neurons lead to high oxidative stress and apoptosis of neurons with alteration of blood-brain barrier¹.². Treatment with aluminum salts induces a significant impairment in memory and learning ability in animals³. Al is a cholinotoxin element producing neuronal loss by altering nicotinic receptors⁴; therefore, Al induces Alzheimer’s like changes. Unfortunately, Al enters in many industries including drugs and home utensils leading to high exposure to human. Alzheimer’s disease is a neurodegenerative disorder and the most common form of dementia characterized by a progressive cognitive impairment and memory loss due to neuronal degeneration, elevated acetylcholinesterase, deposition of neurofibrillary tangles and beta amyloid (Aβ) plaque which contains Aβ peptides. Inflammation and oxidative stress are among the main features of AD⁵. Myeloperoxidase produced an array of oxidants that induced tissue damage during inflammation and the further expression of such enzyme contributes to the pathological changes in the brains of AD patients⁶. Nuclear
factor-Kappa B (NF-κB) is a protein complex that control transcription of DNA, cytokine production and cell survival and it is a key regulator of innate immunity, NF-κB was recently reported as a possible risk factor in AD model and that it must be targeted for disease prevention\(^9\). Vascular diseases and dyslipidemia were accused for enhancing the onset and progression of AD\(^8\). The role of AI and dyslipidemia in induction of AD was exploited to establish an animal model for Alzheimer’s like disease\(^8\) to study the efficacy of new therapies and dietary supplements.

So far, no efficacious therapy is present for AD except for just alleviation of the symptoms. The elevated incidence of AD owing to increased number of elderly necessitates a real dietary strategy and search for remedy. Omega-3 fatty acids (n-3) like eicosapentaenoic (EPA) and docosahexaenoic (DHA) are important for neurons and immune function. They possess antiinflammatory and blood anticoagulant effect and proposed to preserve cognitive function\(^10\). Omega-3 polyunsaturated fatty acids were reported to promote brain to blood clearance of β-amyloid in AD model in mice\(^11\). Gamma-linolenic fatty acids in evening primrose oil (EPO) are precursor of the anti-inflammatory eicosanoids and possess antioxidant activity\(^12, 13\) that might prevent neurodegeneration.

The aim of the present research was to study the beneficial effect of fish oil, primrose oil and their mixture in rat model of Alzheimer’s like disease induced by intraperitoneal aluminum lactate and enhanced by feeding dyslipidemic diet. Biochemical parameters reflecting oxidative stress and inflammation were studied in the brain. In addition, plasma lipid profile, magnesium and butyrylcholine esterase were determined together with brain histopathology and immuno-histochemistry for myeloperoxidase and NF-κB. The fatty acid composition of EPO and primrose/fish oil mixture was studied.

2 Experimental

2.1 Materials

Evening primrose oil (\textit{Oenothera biennis} L. Family: Onagraceae) was obtained from the pharmacy, Egypt under the commercial name primaleve capsules (GalaxoSmithkline pharmaceutical and health care Company). Fish oil capsules (source: anchovy, mackerel, sardine and tuna) were purchased from iHerb (Hebron, KY), United States.

2.2 Chemicals

Aluminum lactate was purchased from Riedel-de Haën, Seelze, Germany for induction of Alzheimer’s like disease model in rats.

2.3 Animals

Male albino rats of body weight ranging from 140 to 160 g were obtained from Research Institute of Ophthalmology, Giza, Egypt. Animals were kept individually in stainless steel cages. Water and food were given \textit{ad-libitum} with 12 h light/dark cycle. The animals received humane care according to the Medical Research Ethics Committee, National Research Centre, Cairo, Egypt, and the study followed the recommendations of the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication No. 85-23, revised 1985); registration No. 18205.

2.4 Methods

2.4.1 Determination of fatty acids profile in primrose and primrose/fish oil mixture by gas chromatography (GC)

Methanol sulphuric acid and chloroform mixture was used for preparation of fatty acids methyl esters\(^14\). Hewlett Packard HP-system 6890 GC equipped with flame ionization detector. HP-5 column (30 m x 0.32 mm i.d.; 0.25 μm film thickness) was used for separation of fatty acids methyl esters. The conditions of GC were; 70°C as an initial temperature that hold for 1 min then elevated to 120°C with a rate of 40°C/min, then 2 min hold and the temperature was finally raised to 220°C with a rate of 4°C/min with another 20 min hold. The temperature of detector and injector were 280 and 250°C, respectively. Fatty acids methyl esters were identified by direct comparison of their retention times with that of standards analyzed at the same conditions. Quantization was based on peak area integration. Supelco standard fatty acid methyl esters obtained from Merck, Darmstadt, Germany was used.

2.4.2 Preparation of diets

Two diets were prepared as shown in Table 1. A balanced diet was prepared according to previous research\(^15\). The dyslipidemic diet contained sucrose, sheep tallow, cholesterol and bile salts while devoid of cellulose. The composition of the dyslipidemic diet was similar to that prepared previously\(^16, 17\) with minor modifications.

2.4.3 Preparation of dosage form of the oils

Fish oil was mixed with primrose oils (1:1, w/w) to prepare the oil mixture. To facilitate dosing of different oils to rats; they were prepared into emulsion form. Fish oil, primrose oil and primrose/fish oil mixture were added separately to tween 80 (10% of oil weight) mixed well with vortex with drop-wise addition of water to prepare three oil in water emulsions. It was taken into consideration to use fixed quantities of tween and water in each emulsion. A vehicle was made by mixing tween 80 and water with the same ratio as in the oil emulsions (for dosing to control groups of rats). The dose was 270 mg from each oil/kg rat body weight according to previous study\(^18\).

2.4.4 Design of animal experiment to evaluate the efficacy of different oils towards Alzheimer’s like disease

To induce Alzheimer’s like disease in rats, Al lactate was dissolved in saline to be given intra-peritoneal to rats as 7.5
Fish and Primrose Oils Suppress Alzheimer’s Disease Progression

The rats were divided into 5 groups; each of eight rats. Rats of four groups were treated with intraperitoneal aluminum lactate as 7.5 mg Al/Kg rat body weight (4 days a week) and fed on hyperlipidemic diet; one group served as control Alzheimer’s disease (CA) while the other three groups (test groups) received daily oral dose (270 mg/Kg rat body weight) of primrose oil, fish oil and primrose/fish oil mixture separately. The rats of the fifth group were fed on balanced diet as control normal (CN). Rats of CA and CN groups received daily oral dose of the vehicle. Rats of CN group were treated by intra-peritoneal saline (4 days/week). The experiment continued for 5 weeks. During the experiment; body weight and food intake were recorded weekly. At the end of the experiment body weight gain and total food intake were calculated. Blood samples were drawn from fasted anaesthetized rats and divided into two parts, one mixed with trisodium citrate for determination of erythrocyte sedimentation rate (ESR) while the second part was received in heparinized tubes and centrifuged at 3000 rpm (0.235 g) for 15 min for separation of plasma. Plasma total cholesterol (T-C), triglycerides (TG) and high density lipoprotein cholesterol (HDL-C) were determined by colorimetric technique while LDL-C was calculated. Plasma butyrylcholinesterase (BChE) activity was estimated adopting colorimetric kinetic method. Plasma magnesium (Mg) was assessed according to previous colorimetric procedure. Brain was immediately received on ice and cut into two longitudinal sections; a part was used for assessment of nitrite, malondialdehyde (MDA),

Table 1 Composition of different experimental diets (g/100 g).

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Balanced diet</th>
<th>Dyslipidemic diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>12.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Sheep tallow</td>
<td>–</td>
<td>20.00</td>
</tr>
<tr>
<td>Sunflower oil</td>
<td>10.00</td>
<td>–</td>
</tr>
<tr>
<td>Maize starch</td>
<td>68.50</td>
<td>20.70</td>
</tr>
<tr>
<td>Sucrose</td>
<td>–</td>
<td>41.55</td>
</tr>
<tr>
<td>Cellulose</td>
<td>5.00</td>
<td>–</td>
</tr>
<tr>
<td>Salt mixture</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>–</td>
<td>1.00</td>
</tr>
<tr>
<td>Bile salt</td>
<td>–</td>
<td>0.25</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 2 Fatty acids composition of primrose oil and primrose/fish oil mixture as percentage of total fatty acids.

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>Primrose oil</th>
<th>Primrose /Fish oil mixture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristic acid, C14:0</td>
<td>–</td>
<td>3.60</td>
</tr>
<tr>
<td>Palmitic, C16:0</td>
<td>6.80</td>
<td>12.30</td>
</tr>
<tr>
<td>Palmitoleic, C16:1</td>
<td>–</td>
<td>4.80</td>
</tr>
<tr>
<td>Stearic, C18:0</td>
<td>2.36</td>
<td>3.50</td>
</tr>
<tr>
<td>Oleic, C18:1</td>
<td>9.17</td>
<td>10.50</td>
</tr>
<tr>
<td>Linoleic, C18:2 (n-6)</td>
<td>67.74</td>
<td>34.40</td>
</tr>
<tr>
<td>Gamma linolenic C18:3 (n-6)</td>
<td>9.15</td>
<td>4.30</td>
</tr>
<tr>
<td>α-linolenic C18:3 (n-3)</td>
<td>–</td>
<td>1.40</td>
</tr>
<tr>
<td>Arashidic, C20:0</td>
<td>0.49</td>
<td>0.21</td>
</tr>
<tr>
<td>EPA, C20:5 (n-3)</td>
<td>–</td>
<td>10.90</td>
</tr>
<tr>
<td>DHA, C22: 6 (n-3)</td>
<td>–</td>
<td>6.50</td>
</tr>
<tr>
<td>Total saturated fatty acids</td>
<td>9.65</td>
<td>19.61</td>
</tr>
<tr>
<td>Total unsaturated fatty acids</td>
<td>86.06</td>
<td>72.80</td>
</tr>
<tr>
<td>Total monounsaturated fatty acids</td>
<td>9.17</td>
<td>15.30</td>
</tr>
<tr>
<td>n-6/n-3</td>
<td>76.89: 0*</td>
<td>2.06: 1</td>
</tr>
</tbody>
</table>

*: n-3 fatty acids were not detected in primrose i.e. equal 0.

n-6 = ω_6
n-3 = ω_3
and 4.30, respectively. The major fatty acid in both primrose oil and the oil mixture is linoleic acid, more than twice the percentage in the oil mixture. Gamma-linolenic in primrose constituted 12.29% in the oil mixture. It could be noticed that n-6: n-3 was 76.89: 0 while the other part was fixed in 10% formalin for application of immuno-histochemistry for myeloperoxidase and NF-κB and histopathological examination.

3 Results

3.1 Fatty acids profile in primrose and primrose/fish oil mixture

The fatty acids composition of primrose and primrose/fish oil mixture is shown in Table 2. It could be noticed that the major fatty acid in both primrose oil and the oil mixture was the ω6 linoleic (67.74 and 34.40%, respectively) that showed double the percentage in primrose oil compared to the oil mixture. Gamma-linolenic in primrose constituted more than twice the percentage in the oil mixture (9.15% and 4.30%, respectively). Oleic acid showed slightly lower percentage in primrose oil (9.17%) compared to that in the oil mixture (10.50%). Total saturated fatty acids reached 9.65% and 19.61 in primrose oil and the oil mixture, respectively which showed very lower percentage in case of primrose oil compared to the oil mixture. Total unsaturated fatty acids were 86.06% and monounsaturated fatty acids were 9.17% in primrose while they were 72.80 and 15.30 in the oil mixture; which reflects appreciably higher percentage of total unsaturated fatty acids and lower percentage of monounsaturated fatty acids in primrose compared to the oil mixture. It was observed that n-6: n-3 was 76.89: 0 and 19.61 in primrose oil and the oil mixture, respectively.

3.2 Results of animal experiment

ESR, plasma TG, T-C, LDL-C, T-C/HDL-C and BChE of CA group showed significant increase compared to that of CN (Table 3). There were significant reduction of plasma HDL-C and Mg levels of CA group compared to CN group. Treatment with the different oils showed significant reduction of ESR, plasma TG, T-C, LDL-C, T-C/HDL-C and BChE with significant increase in HDL-C compared to CA. Only administration of the oil mixture from the test groups showed significant increase in plasma Mg compared to CA. ESR and all plasma parameters levels of the test groups could not reach the normal levels of the CN group. Plasma Mg level of the group that was given the oil mixture could not reach the normal levels of the CN group. Plasma ESR and all plasma parameters levels of the test groups showed significant increase in plasma Mg compared to CA. Only administration of the oil mixture from the test groups showed significant increase in plasma Mg compared to CA.
Fish and Primrose Oils Suppress Alzheimer’s Disease Progression

Table 4 Nutritional parameters and brain weight of different experimental groups (Mean ± SE).

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parameters</th>
<th>Initial body weight (g)</th>
<th>Final body weight (g)</th>
<th>Body weight gain (g)</th>
<th>Total food intake (g)</th>
<th>Brain weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td></td>
<td>153.00 ± 5.41</td>
<td>217.33 ± 4.53</td>
<td>64.33 ± 8.23</td>
<td>405.00 ± 5.16</td>
<td>1.60 ± 0.03</td>
</tr>
<tr>
<td>CA</td>
<td></td>
<td>152.14 ± 3.43</td>
<td>163.71 ± 4.30</td>
<td>11.57 ± 3.74</td>
<td>143.29 ± 13.27</td>
<td>1.42 ± 0.01</td>
</tr>
<tr>
<td>Primrose oil</td>
<td></td>
<td>152.00 ± 4.90</td>
<td>188.44 ± 4.82</td>
<td>36.44 ± 3.1</td>
<td>221.11 ± 8.07</td>
<td>1.52 ± 0.02</td>
</tr>
<tr>
<td>Fish oil</td>
<td></td>
<td>152.70 ± 2.32</td>
<td>195.43 ± 5.75</td>
<td>42.71 ± 5.49</td>
<td>215.29 ± 18.45</td>
<td>1.58 ± 0.03</td>
</tr>
<tr>
<td>Oil mixture</td>
<td></td>
<td>152.60 ± 2.80</td>
<td>203.90 ± 5.59</td>
<td>51.30 ± 5.55</td>
<td>214.50 ± 11.01</td>
<td>1.59 ± 0.02</td>
</tr>
</tbody>
</table>

In the same column; different superscript letters mean significant difference at p < 0.05 while similar superscript letters mean insignificant change.

No. of rats in each group: 8

CN: Control normal, CA: Control Alzheimer’s like disease.

Table 5 Effect of severity of histopathological alterations in the brain of different experimental groups.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Degeneration of neurons</th>
<th>Necrosis of neurons</th>
<th>Neurofibrillary tangles</th>
<th>Perivascular edema</th>
<th>Focal hemorrhages</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>--</td>
<td>++</td>
<td>+++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>CA</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Primrose oil</td>
<td>+++</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>--</td>
</tr>
<tr>
<td>Fish oil</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Primrose/fish oil mixture</td>
<td>++</td>
<td>++</td>
<td>++</td>
<td>+</td>
<td>--</td>
</tr>
</tbody>
</table>

CN: Control normal, CA: Control Alzheimer’s like disease

+++ Severe, ++ moderate, + mild, − Nil.

showed insignificant change from CN.

Brain tissue demonstrated significant increase in MDA and NO along with significant reduction of CAT and GSH in CA group compared to CN group (Table 3). Treatment with the different oils reduced MDA and NO significantly compared to CA. The levels of MDA of the test groups showed significant reduction compared to CN. Administration of either primrose or fish oil produced insignificant change in NO while the oil mixture showed significant reduction compared to CN. The test groups produced significant reduction in both CAT and GSH compared to CA. Brain CAT activity showed significant reduction while GSH demonstrated insignificant change compared to CN.

Nutritional parameters and brain weights are compiled in Table 4. Final body weight, body weight gain, food intake and brain weight of CA group showed significant reduction compared to CN. Treatment with the tested oils produced significant increase in final body weight, body weight gain, food intake and brain weight compared to CA group. Final body weight and body weight gain of the group given the oil mixture showed insignificant change from CN while administration of either primrose or fish oil still showed significant reduction of such parameters from CN. Total food intake of the test groups demonstrated significant reduction compared to CN group. Brain weights of rats of the groups given primrose oil showed significant reduction compared to CN. Treatment with either fish oil or the oil mixture produced insignificant change of brain weights compared to CN.

3.3 Brain histopathological changes

Histopathological changes of the brain are present in Fig. 1 and Table 5. It could be seen that brain of CA group showed degeneration and pyknosis in neurons with formation of focal amorphous eosinophilic materials in the cerebral cortex (Fig. 1A). Brain of the same group demonstrated necrosis of the neurons and formation of focal area of malacia at the cerebral cortex, neuritic plaques and neurofibrillary tangles (Fig. 1B). It could be also noticed from Fig. 1C that brain of CA group showed neurofibrillary tangles in different areas of the brain with abnormal distribution of neurons, fibrotic changes and neuritic threads. CA group illustrated severe formation of neurofibrillary tangles in hippocampus together of focal area of hemorrhages and gliosis in the brain tissue (Figs. 1D and E). Normal control group showed normal appearance of brain cells and neurons (Fig. 1F). The three test groups treated with primrose oil, fish oil and the oil mixture demonstrated normal appearance of brain cells and neurons compared to CN.
improvement in brain histopathological changes where administration of the oil mixture showed superiority followed by fish oil, then primrose oil (Figs. 1G, H, I and Table 5).

3.4 Immuno-histochemistry for brain NF-κB and myeloperoxidase

Figures 2B and 3B illustrate that CA group showed severe reaction concerning both NF-κB and myeloperoxidase in the brain while administration of primrose oil, fish oil and the oil mixture reduced the level of both NF-κB and myeloperoxidase to moderate (Figs. 2C, D, E and Figs. 3C, D, E).

4 Discussion

The pathophysiology of AD is a complicated pathway which is not well understood. High oxidative stress in the brain represented by elevated MDA, NO and reduced GSH and enzymatic antioxidants might be one arm of AD pathogenesis. Such high oxidative stress could enhance brain neuro-inflammation which consequently might lead to necrosis and apoptosis of brain cells. On the other hand, the deposition of Aβ and neurofibrillary tangles in the brain was reported as being main features of AD that might initiate free radicals and inflammation. Recently high expression of myeloperoxidase was reported in AD which participates in the induction of oxidative stress that could certainly lead to necrosis and apoptosis of brain cells. NF-κB was highly expressed in AD leading to increased release of inflammatory cytokines that prime inflammation in the brain of AD patients with simultaneous transcription of DNA that potentiates cell disintegration and death in the brain. Elevated acetylcholine esterase and BChE play an important role in pathogenesis of AD due to reducing acetylcholine transmitter which is very essential for memory. The increase in plasma BChE was seen in the AD like model in the present study with elevation of brain
Fish and Primrose Oils Suppress Alzheimer’s Disease Progression

Fig. 2: Photograph for NF-κB immuno-histochemical staining of brain tissue section of rats (X200): A: Control normal group showed mild reaction of NF-κB immunopositive cells. B: The group treated by aluminum lactate and served as control Alzheimer’s like disease illustrated severe increase in reaction of NF-κB. C: Group treated with fish oil showed moderate reaction of NF-κB immunopositive cells. D: Group treated with primrose oil demonstrated moderate positive reaction in NF-κB immunopositive cells. E: Group treated with oil mixture showed moderate positive reaction in NF-κB immunopositive cells.

Fig. 3: Photograph for myeloperoxidase immunohistochemical staining of brain tissue section of rats (X200). A: negative control group showed mild positive reaction in myeloperoxidase immunopositive cells. B: The group treated by aluminum lactate and served as control Alzheimer’s like disease illustrated severe increase (highly positive) in myeloperoxidase immune-positive cells. C: Group treated with fish oil demonstrated moderate positive reaction in myeloperoxidase immune-positive cells. D: Group treated with primrose oil showed moderate positive reaction in myeloperoxidase immune-positive cells. E: Group treated with oil mixture demonstrated moderate positive reaction in myeloperoxidase immune-positive cells.
oxidative stress and inflammation represented by increased MDA, NO and ESR and reduced GSH and catalase with increased reaction of brain myeloperoxidase and NF-kB which pointed to changes simulating that of AD in human. Also, plasma Mg was reduced in the AD model in the present study. Reduced levels of Mg were reported in serum and various tissues of AD patients and negatively correlated with disease deterioration through modulation of the processing of amyloid beta precursor protein. Mg deficiency lead to impairment in emotional memory while Mg therapy recover cognitive function since it enhances short and long-term synaptic function and improves learning and memory in rats but within certain limits of dose level\(^{33, 34}\). Brain histopathological changes represented by cell necrosis, hemorrhage, disintegration, necrosis, malacia and neurofibrillar tangles mostly in cerebral cortex and hippocampus further confirmed the induction of AD like model in the current study. Pyknosis was also noticed in brain sections which is the irreversible precipitation of chromatin in cell nucleus that undergoing necrosis or apoptosis this means that the followed step is karyorrhexis or fragmentation of the nucleus of brain cell. Damage in central nervous system produced nonspecific reactive change in glial cells known as gliosis which was seen in the brain cell in the present study. Gliosis involves hypertrophy of glial cells represented by astrocytes, microglia and oligodendrocytes. Also, neurotic plaques (Senile plaques) were observed in brain histopathology of AD rats in the current work. These neurotic plaques are extracellular deposits of amyloid beta in the grey matter of the brain and were considered together with neurofibrillary tangles as characteristic features of AD. The majority of the histopathological changes of AD rats in the present study agreed with previous studies\(^{33-36}\). These severe changes in the brain clarified that treatment with AI lactate with simultaneous consumption of the diet that enhanced CVD risk succeeded to induce AD model in the present study.

Fish oil, primrose oil and their mixture showed variable suppressions in the progression of AD like model in rats as could be observed in the present study through anti-inflammatory, antioxidant, BChE inhibiting effect and elevation of Mg level. The concomitant improvement of lipid profile. The inflammatory mediator interleukin 1B and 6 and tumor necrosis factor-alpha were inhibited by gamma-linolenic acid and primrose oil contained gamma-linolenic acid agreed with previous studies that oleic and steric demonstrated slightly higher level in the current study. Also vaccenic, eicosanoic, eicosenoic and behenic were not identified in the present study with the presence of traces from arashidic that was not observed in the previous research. This could be ascribed to difference in cultivated areas and other environmental conditions. The fatty acids present in fish oil used in the present research were analyzed in a previous work\(^{33}\) and was shown to contain EPA as 22.768\%, DHA as13.574\%, oleic as 12.771\%, linoleic as 2.379\%, \(\alpha\)-linolenic as 3.368\%, palmitoleic as 9.349 \% and total saturated fatty acids as 31.169\%.

Gamma-linolenic in primrose oil was reported as precursor of anti-inflammatory eicosanoids\(^{40}\). \(\Delta^6\) Desaturase is present in very little quantity in rats and human. Gamma-linolenic acid is a product of \(\Delta^6\) desaturase in the body; therefore, supplement of gamma-linolenic acid can bypass \(\Delta^6\) desaturase step. So, gamma-linolenic acid is elongated to dihomo gamma-linolenic acid which is then converted to arachidonic acid by \(\Delta^6\) desaturase. Key inflammatory cells lack \(\Delta^6\) desaturase which results in accumulation of dihomo gamma-linolenic acid relative to arachidonic acid. Dihomo gamma-linolenic acid can then combine to 5-lipoxygenase and compete to arachidonic acid leading to inhibition of leukotrienes. Dihomo gamma-linolenic acid released from polymorphonuclear granulocytes can be metabolized to 15-hydroxytetraenoic acid (15-lipoxygenase product); therefore leukotriene B4 biosynthesis was inhibited by either dihomo gamma-linolenic acid or 15-hydroxytetraenoic acid. On the other hand, dihomo gamma-linolenic acid could be metabolized by cyclooxygenase to 1-series prostaglandins. These actions denote the anti-inflammatory activity of gamma-linolenic acid. Thus, in addition to direct inhibition of critical enzymes that regulate lipid mediator production, dihomo gamma-linolenic acid can be converted by lipoxygenases and cyclooxygenases to products that can serve as modulators of the conversion of arachidonic acid to leukotriene and prostaglandins. It is worth to mention that due to the very little activity of \(\Delta^6\) desaturase in human and rat, linoleic acid (n-6 fatty acid) cannot be converted to gamma-linolenic acid in the body by a comparable amount that could be supplemented from primrose oil and therefore cannot undergo the abovementioned passway.

The inflammatory mediator interleukin 1B and 6 and tumor necrosis factor-alpha were inhibited by gamma-linolenic acid\(^{41}\). Also improving lipid profile in the present study by gamma-linolenic acid agreed with previous studies that showed reduction in serum triglycerides and total cholesterol in hyperlipidemic mice and rats\(^{33, 41}\) and this may potentiate the efficiency of primrose in reducing the progression of AD.

A diet high in n-3 fatty acids was associated with lower risk of AD\(^{42}\). A diet rich in DHA reduced overall plaque...
Fish and Primrose Oils Suppress Alzheimer’s Disease Progression

5 Conclusion

Fish oil, primrose oil and primrose/fish oil mixture reduced the progression of Alzheimer’s like disease in rat model. Primrose/fish oil mixture was superior in reducing ESR, brain MDA, plasma activity of BChE and brain histopathological changes along with elevating plasma Mg. Fish oil was the most efficient in improving plasma T-C, LDL-C and T-C/HDL-C. Primrose/fish oil mixture and fish oil were more promising in improving plasma HDL-C than primrose. Primrose/fish oil mixture and primrose oil were more efficient in elevating brain CAT compared to fish oil. Other parameters represented by plasma TG, body weight gain and brain GSH, NO, myeloperoxidase, NF-kB and brain weight were more or less equally improved by the three tested oils. These oils might be capable to afford health benefits towards AD patients and cardiovascular disorders.

Acknowledgments

The research was carried out in National Research Centre, Egypt. The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors and was implemented on the expense of the authors.

Conflict of Interest Statement

The authors declare that they have no conflict of interest.

References

J. Oleo Sci. 69, (7) 771-782 (2020)

780
Fish and Primrose Oils Suppress Alzheimer’s Disease Progression

