Two Mixed-ligand Coordination Polymers: Crystal Structures and Protective Effect on Ischemic Stroke by Increasing glp1r Expression

Xing Fang1§*, Ke-Zhen Tong2§, Xin Wang1, and Hua-Fu Ni1

1 Department of Neurology, Beilun People’s Hospital, Ningbo, Zhejiang, CHINA
2 Department of Pediatrics, Ningbo Yinzhou People’s Hospital, Zhejiang, CHINA
§ Authors are contributed equally to this work.

Abstract: In this study, two new mixed-ligand coordination polymers \{[Co(bbi)(tdc)·5H2O]n (1, bbi = 1,4-bis(imidazolyl)butane) and [Cu2(bimb)(H2O)(μ3-tdc)2(DMF)2·H2O]n (2, bimb = 4-bis(1H-imidazol-1-yl-methyl)benzene)\} were synthesized under the solvothermal conditions via reaction of 2,5-thiophenedicarboxylic acid (H2tdc) with the corresponding metal salts in the existence of different flexible bis-imidazole ligands (bbi for 1 and bimb for 2). The as-prepared two structures were detected via the single crystal X-ray diffraction (SXRD) and then characterized via the analysis of element, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) as well as infrared (IR) spectroscopy. Furthermore, the protective activity of the compound on the mice with ischemic stroke was evaluated. Firstly, the real time reverse transcription-polymerase chain reaction (RT-PCR) was carried out to determine the effect of compounds 1 and 2 against the relative expression level of the glucagon-like peptide 1 receptors (glp1r) on the cerebrovascular endothelial cells. Next, the Morris Water Maze Experiment was also used to detect the improvement function of compounds 1 and 2 on the mice cognitive function.

Key words: coordination polymers, mixed-ligand, X-ray diffraction, ischemic stroke

1 Introduction

Stroke is the primary factor for the severe disability and also the second most familiar factor of death. Ischemic stroke is the most common type of stroke1. Stroke is closely related to diabetes, and the two often occur simultaneously. In recent years, receptor agonists of glucagon-like peptide-1 (GLP-1) have been extensively utilized in clinical treatment for diabetes of type 2, and which have also been reported to have neuroprotective effects in ischemic stroke2, 3. However, up to now, the specific mechanism of the GLP-1 agonists on the ischemic stroke was very clear. Although prevention of stroke through a healthy lifestyle can decrease the likelihood of stroke, the strategies of post-stroke pharmacological conducted to decrease the brain damage caused by stroke and promote rehabilitation are also necessary4, 5. At present, there is a lack of treatment methods for stroke based on neuroprotection. Reducing stroke damage by activating glucagon-like peptide 1 receptors (GLP-1 RAs) is a relatively new concept.

Transition metal complexes of multidentate heterocyclic ligands containing nitrogen donor sites have gained prominence due to their versatile structural features, varied ligational behaviour, beneficial biological activities and potential applications in the fields of medicine, materials research and catalysis6-10. Metal complexes, particularly those containing sp2 hybrid nitrogens as part of the aromatic system of the ligands, find significant applications as drugs11, 12. Thus, selecting safe, efficient and biocompatible ligands has become a crucial factor in the field of structural design, drug therapy and clinical applications. Polydentate ligands such as polycarboxylic acids or nitrogen-containing heterocyclic ligands are widely used in the rational design and controlled synthesis of these multifunctional complexes13-15. Recently, N-heterocyclic carboxylate ligands have attracted considerable attention of chemists and biologists because of their abundant coordination modes and functional properties, as well as hydrogen-bonding donors and acceptors under solution conditions. Many metal complexes of Cu(II) and Co(II) exhibit anticancer, antibacterial and antihelminthic properties through intercalative interactions.

*Correspondence to: Xing Fang, Department of Neurology, Beilun People’s Hospital, Ningbo, Zhejiang, CHINA
E-mail: xing_fang111@126.com
Accepted March 22, 2020 (received for review February 19, 2020)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jjocs
with DNA. In this study, two new mixed-ligand coordination polymers [(Co(bbi) (tdc)] ·5H2O, (1), bbi = 1,4-bis (imidazolyl)butane) and [(Cu3(bimb) (H2O) ·(μ3-tdc)2 (DMF) ·2] ·H2O, (2), bimb = 4-bis (1H-imidazol-1-yl-methyl) benzene) were synthesized under the solvothermal conditions via reaction of 2,5-thiophenedicarboxylic acid (H2tdc) with the corresponding metal salts in the existence of different flexible bis-imidazole ligands (bbi for 1 and bimb for 2). The as-prepared two structures were detected via the single crystal X-ray diffraction (SXRD) and then characterized via the analysis of element, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) as well as infrared (IR) spectroscopy. In biological functional study, the protective function of compounds 1 and 2 against the ischemic stroke was assessed and the particular mechanism was also discussed. The real time PCR results indicated that compound 1 has stronger induction effect on the relative expression of the glucagon-like peptide 1 receptors on the cerebrovascular endothelial cells than compound 2. Besides, the Morris Water Maze Experiment also indicated that compound 1 has stronger protective effect on the mice cognitive function than compound 2.

2 Experimental

2.1 Chemicals and measurements

We could buy all chemicals from market and utilize them with no extra purification. The analyses of element (N, H & C) were carried out with the PerkinElmer 240C analyzer. Via utilizing pure solid samples, the infrared spectrum between 4000 and 400 cm⁻¹ were recorded on the Bruker ALPHA spectrometer. We collected the data of powder X-ray diffraction (PXRD) with the Bruker D8-ADVANCE X-ray diffractometer, and the ranging of Cu Kα radiation (λ = 1.5418 Å) and 20 was 5° to 10°. TG analyses were performed with the Labsys Evo thermal analyzer at 25–80°C in the nitrogen atmosphere, and the heating rate was 5°C · min⁻¹.

2.2 Preparation and characterization for [(Co(bbi) (tdc)] ·5H2O, (1) and [(Cu3(bimb) (H2O) ·(μ3-tdc)2 (DMF) ·2] ·H2O, (2)

For complex 1, the mixture of Co(NO3)2 ·6H2O which is 0.2 mmol and 60 mg, H2tdc(0.25 mmol, 0.043 g), bbi (0.5 mmol, 0.095 g) was added to 5 mL DMF. After stirring 10 min, 1 mL water and 1 mL EtOH were added to the mixture. Then a minimum amount of ammonia was drop-wise added until the system clear. After stirring for about 10 min, we added mixture into a stainless-steel container lined with Teflon under the autogenous pressure and then placed for 96 hours at 120°C. Suitable pink crystals of 1 were obtained by slowly cooling the solution for one day. The yield is 31% on the basis of the H2tdc ligand. Anal. Calcd. for C16H26N4O9SCo: C, 37.25; H, 5.08; N, 10.86%. Found: C, 37.46; H, 4.91; N, 11.02%. IR (KBr pellet, cm⁻¹): 3424(m), 3127(s), 2938(m), 2867(s), 1625(s), 1525(w), 1467(m), 1444(s), 1349(s), 1235(m), 1109(m), 1091(w), 1039(s), 1016(m), 950(w), 880(s), 850(w), 807(n), 768(m), 734(w), 681(s), 658(m), 625(s), 540(w).

For complex 2, we mixed Cu(NO3)2 ·3H2O of 0.062 g and 0.2 mmol, H2tdc which is 0.017 g and 0.1 mmol, bimb of 0.025 g and 0.1 mmol and 3 mL DMF to form a mixture, and added the mixture into a stainless-steel container lined with Teflon under the autogenous pressure and then placed for 96 hours at 120°C. We acquired blue crystals with block-shape, and the yield is 42% (on the basis of Cu). Anal. Calc. for C36H42Cu3N8O16S3: C, 40.19; H, 3.94; N, 7.81%. Found: C, 40.06; H, 3.85; N, 7.75%. IR (solid KBr pellet, cm⁻¹): 3423(s), 3151(s), 2982(m), 2841(s), 1619(s), 1597(s), 1516(s), 1350(s), 1107(s), 1085(w), 1012(s), 1001(m), 936(w), 812(s), 802(s), 753(m), 729(w), 634(s), 613(m), 602(s), 589(w).

With Oxford Xcalibur E diffractometer we acquired the X-ray data. The software of crysalispro was used to analyze the strength data and convert it into HKL files. The program of SHELXS according to direct method was used to establish the initial structure model of compound 1, and the program of SHELXL-2014 according to least square means was modified. Mixing anisotropic parameters with 1’s non-H atoms. Then all the H atom by using AFIX command to geometrically fix on the C atom they are linked to. Table 1 details the crystallographic parameters as well as the refinement of these two complexes.

2.3 Real time RT-PCR

In order to determine the glucagon-like peptide 1 receptors relative expression level on the cerebrovascular endothelial cells after compounds 1 and 2 treatment, the real time RT-PCR was performed in this experiment under protocols’ guidance with slightly modifications. In short, 36 healthy male SPF C57BL/6 mice (8 weeks old, weighing 17-25 g) were offered by the Experimental Animal Center of Sun Yat-sen University. All the animals were kept in the environment of indoor temperature 22°C, humidity 50%, 12 h/12 h day and night light and dark. The model mice were exposure to 1% isoflurane to induce the ischemic stroke model, then the 5 mg/kg compound 1 or 2 was given to preformed the treatment. Afterwards, under the guidance of the manufacturer, isolated the cerebrovascular endothelial cells and extracted the total RNA was extracted by TRIzol Reagent. The concentration of the total RNA was determined with OD260/OD280 ratio, and then the reverse transcribed into cDNA by high-capacity cDNA reverse transcription Kit. Ultimately, the relative expression gipL1r on the cerebrovascular endothelial cells was determined by SYBR Green Master Mix after compound treatment. 2-ΔΔCt method was used for relative quantification from triplicate
2.4 Morris Water Maze Experiment

The influence of compound 1 or 2 on the mice cognitive function was further evaluated with Morris Water Maze Experiment. This experiment was carried out with the instructions with some changes. In short, the Hidden Platform Test lasted for 5 days, and the mice were placed in the water from the 4 water entry points to the pool wall each day, and the time it took to find the platform hidden under the water was recorded (escape latency). The Probe Trains refers to removing the platform after the Hidden Platform Test, and then place the rats in the pool at any one of the water entry points, record their swimming trajectory within 120s to search the original platform, and examine the memory of the test mice.

Table 1 Refinement details and crystallographic parameters for complexes 1 and 2.

<table>
<thead>
<tr>
<th>Identification code</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{16}H_{20}CoN_{4}O_{6}S</td>
<td>C_{32}H_{32}Cu_{2}N_{6}O_{11}S_{2}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>455.35</td>
<td>867.83</td>
</tr>
<tr>
<td>Temperature/K</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Crystal system</td>
<td>orthorhombic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pnma</td>
<td>C2/c</td>
</tr>
<tr>
<td>a/Å</td>
<td>15.859(4)</td>
<td>17.013(5)</td>
</tr>
<tr>
<td>b/Å</td>
<td>15.932(2)</td>
<td>15.028(5)</td>
</tr>
<tr>
<td>c/Å</td>
<td>8.963(3)</td>
<td>17.962(5)</td>
</tr>
<tr>
<td>α°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β°</td>
<td>90</td>
<td>111.845(5)</td>
</tr>
<tr>
<td>γ°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>Volume/Å³</td>
<td>2264.6(10)</td>
<td>4263(2)</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>ρcalc/cm³</td>
<td>1.336</td>
<td>1.352</td>
</tr>
<tr>
<td>μ/mm⁻¹</td>
<td>0.885</td>
<td>1.153</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>2435/6/158</td>
<td>5161/0/243</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.071</td>
<td>0.956</td>
</tr>
<tr>
<td>Final R indexes [I>2σ(I)]</td>
<td>R₁ = 0.0763, ωR₂ = 0.2219</td>
<td>R₁ = 0.0622, ωR₂ = 0.1458</td>
</tr>
<tr>
<td>Final R indexes [all data]</td>
<td>R₁ = 0.0989, ωR₂ = 0.2393</td>
<td>R₁ = 0.1519, ωR₂ = 0.1823</td>
</tr>
<tr>
<td>Largest diff. peak/hole / e Å⁻³</td>
<td>0.67/-0.55</td>
<td>0.60/-1.00</td>
</tr>
<tr>
<td>CCDC</td>
<td>1981356</td>
<td>1981357</td>
</tr>
</tbody>
</table>

3 Results and Discussion

3.1 Molecular structure

Via reacting Co(NO₃)₂·6H₂O with bbi and H₂tdc ligands in H₂O, EtOH and DMF mixed solvents for 96 hours, we acquired pink crystals with block-shape of 1 with the moderate yield. The analysis of single crystal reveals that the complex 1 crystallizes in orthorhombic crystal system with space group Pnma, with the three-fold interpenetrated three-dimensional skeleton. The asymmetric unit for 1 consists of 0.5 Co(II) cation, 0.5 tdc⁻⁻ anion, 0.5 ligand bbi and 2.5 free water molecules as the revealed through the analysis of element as well as the curve of TGA. The absolute Co(II) cation in crystallography is 4-coordinated and completed via two N atoms (N₁#2 and N₁) of two diverse ligand bbi and two carboxylic acid O atoms (O₄#1 and O₁) of two distinct tdc⁻⁻ anions. The lengths of Co-N bond are 1.9584 Å and the lengths of Zn-O bond is between 1.8950 Å and 1.8974 Å in 1. Every tdc⁻⁻ anion links two zinc(II) cations and uses a fully deprotonated fashion of μ₂-η¹: η¹: η²: η², in which the distance of Co-Co is 8.986(3) Å (Fig. 1b). In addition, the ligand bbi link adjacent Co(II) cations, leading to Co-Co separation 12.491(4) Å. In the coordination modes, the ligands bbi and anions tdc⁻⁻ combine the Co(II) centers to form a three-dimensional porous skeleton which has a nanochannel along the axis, as revealed in Fig. 1c. It is worth noting that the macro pores in the skeleton are deep occupied through the mutual penetration for two identical frames, resulting in the formation of 3-fold structure of mutual penetration.
O5, O3 and O1 ligands building block. Every tdc ligand is formed in a two-dimensional grid network, in which bimb ligands provide N atoms from 2 imidazoles to coordinate with 2 Cu(II) ions in adjacent networks (Fig. 2c). Here, if $[\text{Cu}_2(\mu_2\cdot\text{H}_2\text{O})\cdot\text{tdc}]_2^+$ binuclear units are considered as 6-linked nodes, the threedimensional structure can be simplified as the 6-linked skeleton which has $(4^1, 6^3)$ topology (Fig. 2d).

In order to determine these complexes phase purity, the experiments of powder X-ray diffraction (PXRD) were carried out (Fig. 3a). The simulated and experimental PXRD peak positions are consistent, which shows that the crystal structures are the real representative of bulk crystal. The strength difference may be due to the crystal samples preferred orientation. Meanwhile, in order to study 1’s and 2’s thermal stability, the experiment thermogravimetric analysis (TGA) was performed between 25 and 800°C with the reflux of nitrogen, and the heating rate is $10°C \cdot min^{-1}$ (Fig. 3b). The curve of TGA of complex 1 shows two distinct weightlessness processes. The first weight loss in the 32–163°C is owing to 5 free water molecules release (obsd. 17.10%, calcld. 16.91%). The ligands decomposition occurred between 340°C and 430°C. Residual residue can be distributed to the generation of CoO (obsd. 16.12%, calcld. 15.61%). The curve of TGA of complex 2 reveals the weightlessness of 18.67% before 300°C, which might be owing to the release for coordinated DMF molecules as well as lattice water (calcld: 18.70%). The second weightlessness step between 300 and 700°C is owing to 5 free water molecules release (obsd. 16.12%, calcld. 15.61%). The curve of TGA of complex 1 shows two distinct weightlessness processes.

Fig. 1 (a) View of Co(II) ions coordination surroundings in the complex 1. (b) The coordination patters for the two ligands in 1. (c) 1’s single network. (d) The three-fold interpenetrated architecture of 1.
peak around 3424 and 3423 cm$^{-1}$ relates to the O–H stretching vibration modes of hydrogen bonds on the lattice and the coordinated water molecules (Figs. 3c and d). There is no absorption band around 1700 cm$^{-1}$ for complexes 1–2, which indicates that the carboxylate groups of organic ligands are completely deprotonated.
The asymmetric and symmetric stretching vibrations of carboxyl groups 1625, 1349 cm\(^{-1}\) for 1, 1619, 1350 cm\(^{-1}\) for 2 and the separations ($\Delta \nu = [\nu_{\text{as}} - \nu_{\text{s}}]$) between these bands indicate the presence of monodentate (276 cm\(^{-1}\) for 1 and 269 cm\(^{-1}\) for 2) coordination modes of the carboxylate groups. The bands at 1525 cm\(^{-1}\) and 1516 cm\(^{-1}\) for 1 and 2 are assigned to the CN absorption in the imidazole ring of bbi or bimb ligand, respectively.

3.2 Compound increased the relative expression level of the $glp1r$ on the cerebrovascular endothelial cells

In the last decades, the GLP-1 agonists were revealed to show excellent neuroprotective effects in ischemic stroke. Thus, in the study, the $glp1r$ relative expression level on the cerebrovascular endothelial cells after compound 1 or 2 treatment was evaluated with RT-PCR. After the construction of the ischemic stroke mice model, 5 mg/mL compound 1 or 2 was given for treatment, and the expression level of the $glp1r$ on the cerebrovascular endothelial cells was determined with real time RT-PCR. As the data from the Fig. 4, we can see that the expression level of the $glp1r$ on the cerebrovascular endothelial cells was obviously reduced in group of model, and there is significantly difference between these two groups. After compound 1 treatment was escape latency was significantly reduced, indicated the promotion effect of compound 1 on the mice learning ability. Different from compound 1, compound 2 without effect on the improvement of the mice learning ability (A). The Probe Trains results also suggested that the time cost by compound 1 treated mice was much shortened compared with the model mice, but not compound 2 (B), which indicated that compound 1 has better promotion effect on the mice memory ability.

3.3 Compound increased the mice cognitive function

In the former study, we have demonstrated the promotion function of the compound on the relative expression level of the $glp1r$ on the cerebrovascular endothelial cells. But whether the compound also has protective effect on the mice cognitive function was still unclear. Thus, in this experiment the mice cognitive function was evaluated by Morris Water Maze experiment. As the data from the Fig. 5, we can see that the escape latency of the model mice was much longer than the control normal mice, there was significantly difference between these two groups. After compound 1 treatment was escape latency was significantly reduced, indicated the promotion effect of compound 1 on the mice learning ability. Different from compound 1, compound 2 without effect on the improvement of the mice learning ability (A). The Probe Trains results also suggested that the time cost by compound 1 treated mice was much shortened compared with the model mice, but not compound 2 (B), which indicated that compound 1 has better promotion effect on the mice memory ability.

4 Conclusion

To sum up, we have triumphantly generated two novel mixed-ligand coordination polymers via reaction of the corresponding metal salts with the 2,5-thiophenedicarboxylic acid (H_2tdc) in the existence of different flexible bis-imidazole ligands (bbi for 1 and bimb for 2). The as-prepared two structures were detected via the single crystal X-ray diffraction (SXRD) and then characterized via the analysis of element, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) as well as infrared (IR) spectroscopy. Complex 1 reveals a rare three-fold interpenetrated skeleton which has the 6^3-dia topology and complex 2 exhibits the 6-linked skeleton which has (4^{12}, 6^3) topology. In this present research, the protective function of compounds 1.

Fig. 4 Increased the relative expression level of the $glp1r$ on the cerebrovascular endothelial cells. After establishing the model of ischemic stroke in mice, 5 mg/mL compound 1 or 2 was given for treatment, and the expression level of the $glp1r$ on the cerebrovascular endothelial cells was determined with real time RT-PCR.
and 2 against the ischemic stroke was assessed and the particular mechanism was also discussed. The results of the real time PCR indicated that compound 1 has stronger induction effect on the relative expression of the glucagon-like peptide 1 receptors on the cerebrovascular endothelial cells compared with compound 2. Besides, the Morris Water Maze Experiment also indicated that the compound 1 has stronger protective effect on the mice learning ability and memory ability than compound 2.

Conflicts of Interest
The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Data Availability
The data used to support the findings of this study are included within the article.

Acknowledgements
The research did not receive any specific funding.

References
7) Alvarez, N.; Mendes, L.F.S.; Kramer, M.G.; Torre, M.H.; Costa-Filho, A.J.; Ellena, J.; Facchin, G. Development

![Fig. 5](image-url) Improved mice learning ability and memory ability after compound treatment. After the construction of the ischemic stroke mice model, 5 mg/mL compound 1 or compound 2 was given for treatment. The Morris Water Maze experiment was carried out to determine the learning ability (A) and memory ability (B) of the mice.

