Essential Oil from Clove Bud (Eugenia aromatica Kuntze) Inhibit Key Enzymes Relevant to the Management of Type-2 Diabetes and Some Pro-oxidant Induced Lipid Peroxidation in Rats Pancreas in vitro

Ganiyu Oboh¹*, Ifeoluwa A. Akinbola¹, Ayokunle O. Ademosun¹, David M. Sanni¹, Oluwatoyin V. Odubanjo¹, Tosin A. Olasehinde¹,² and Sunday I. Oyeleye¹

¹ Functional Foods and Nutraceuticals Unit. Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
² Nutrition and toxicology division, Food Technology Department, Federal Institute of Industrial Research, Oshodi, (FIIRO), P.M.B. 21023, Lagos, Nigeria.

Abstract: The inhibition of enzymes involved in the breakdown of carbohydrates is considered a therapeutic approach to the management of type-2 diabetes. This study sought to investigate the effects of essential oil from clove bud on α-amylase and α-glucosidase activities. Essential oil from clove bud was extracted by hydrodistillation, dried with anhydrous Na₂SO₄ and characterized using gas chromatography-mass spectrometry (GC-MS). The effects of the essential oil on α-amylase and α-glucosidase activities were investigated. The antioxidant properties of the oil and the inhibition of Fe²⁺ and sodium nitroprusside-induced malondialdehyde (MDA) production in rats pancreas homogenate were also carried out. The essential oil inhibited α-amylase (EC₅₀=88.9 μL/L) and α-glucosidase (EC₅₀=71.94 μL/L) activities in a dose-dependent manner. Furthermore, the essential oil inhibited Fe²⁺ and SNP-induced MDA production and exhibited antioxidant activities through their NO⁺, OH⁺, scavenging and Fe²⁺-chelating abilities. The total phenolic and flavonoid contents of the essential oil were 12.95 mg/g and 6.62 mg/g respectively. GC-MS analysis revealed the presence of α-pinene, β-pinene, neral, geranial, gamma terpinene, cis-ocimene, allo ocimene, 1,8-cineole, linalool, borneol, myrcene and pinene-2-ol in significant amounts. Furthermore, the essential oils exhibited antioxidant activities as typified by hydroxyl (OH) and nitric oxide (NO) radicals scavenging and Fe²⁺-chelating abilities. The inhibition of α-amylase and α-glucosidase activities, inhibition of pro-oxidant induced lipid peroxidation in rat pancreas and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress induced type-2 diabetes.

Key words: essential oil, clove bud, diabetes, α-amylase, α-glucosidase

1 Introduction

Recent reports have revealed that hyperglycemia and oxidative stress both play a crucial role in the early onset and progression of diabetes via glycosylation of macromolecules and oxidative damage to pancreatic β-cells⁹. The pancreas is thought to be susceptible to oxidative stress due to low antioxidant capacity¹⁰. However, an approach to prevent/manage type-2 diabetes is to decrease postprandial hyperglycemia and augment the body’s antioxidant status through dietary means.

Diabetes mellitus is a chronic metabolic disease associated with hyperglycemia, resulting from insufficient or inefficient insulin secretion⁴. Recent trends in the management of diabetes involve regulation/control of postprandial blood glucose. This is because in diabetic conditions there are elevated levels of glucose in the blood due to the inability of the pancreas to secrete insulin. Carbohydrate-hydrolyzing enzymes such as α-amylase and α-glucosidase helps to breakdown complex carbohydrates to facilitate the release of glucose into the blood. Inhibition of these enzymes

*Correspondence to: Ganiyu Oboh, Functional Foods and Nutraceuticals Unit. Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria.
E-mail: goboh2001@yahoo.com
Accepted March 17, 2015 (received for review December 4, 2014)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jjocs
thereby retards the absorption of glucose. Natural sources of α-amylase and α-glucosidase inhibitors are of great importance in folk medicine for the treatment and management of type-2 diabetes. Essential oils with strong antioxidant properties have been reported to be good inhibitors of these enzymes thereby acting on them to control hyperglycemia and prevent other diabetic complications which can be triggered by oxidative stress.

Clove is an evergreen tree which belongs to the family Myrtaceae. It produces a flower bud which has good fragrance and taste and commonly used as spice for cooking in different parts of the world. Clove bud has numerous medicinal properties. It has been reported that it has antioxidant, antimicrobials, anti-inflammatory, antiseptic, analgesic and anti-convulsant properties. Some bioactive compounds such as the terpenoids, monoterpenes, sesquiterpenes, and other compounds have been reported to be present in the clove bud essential oil. Moreover, there is a dearth of information on the inhibitory effects of essential oil from clove bud on α-amylase and α-glucosidase activities. This study investigated the anti-hyperglycemic and antioxidant properties of clove bud essential oil purchased from Sigma Chemical Co. (St. Louis, MO). Except stated otherwise, all other chemicals and reagents were of analytical grades and the water was glass distilled.

2 Materials and Methods

2.1 Materials

2.1.1 Sample collection

Clove buds were collected from the Akure main market (South West of Nigeria) and ground to fine powder and using Warring Commercial heavy Duty Blender (Model 37BL18; 240CB6). Authentication of the samples was carried out at the Department of Crop, Soil and Pest management (CSP), Federal University of Technology, Akure, Nigeria.

2.1.2 Essential oil isolation

100 g of the ground clove bud powder was subjected to hydrodistillation for 3 h in an all glass Cleveger – type apparatus according to the method recommended by the European Pharmacopoeia. The extracted oil sample was passed over anhydrous sodium sulphate and stored in sealed vials at 4 °C for further analysis.

2.1.3 Chemicals and reagents

Chemicals and reagents used such as thiobarbituric acid TBAR, 1,10-phenanthroline, deoxyribose, gallic acid, Folin-Ciocalteaus reagent were procured from Sigma-Aldrich, Inc., St Louis, MO, trichloroacetic acid TCA was sourced from Sigma-Aldrich, Chemie GmbH Steinheim, Germany, hydrogen peroxide, methanol, acetic acid, thiourea, Copper sulphate, sulfuric acid, sodium carbonate, aluminum chloride, potassium acetate, sodium dodecyl sulphate, Iron[II] sulfate, potassium ferricyanide and ferric chloride were sourced from BDH Chemicals Ltd., Poole, England, Porcine pancreatic α-amylase and rat intestinal α-glucosidase were

2.2 Methods

2.2.1 α-Amylase inhibition assay

The essential oil (500 μL) and 500 μL of 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M NaCl) containing Hog pancreatic α-amylase (EC 3.2.1.1) (0.5 mg/mL) were incubated at 25°C for 10 minutes. Then, 500 μL of 1% starch solution in 0.02 M sodium phosphate buffer (pH 6.9 with 0.006 M NaCl) was added to each tube. The reaction mixtures were incubated at 25°C for 10 minutes and stopped with 1.0 ml of dinitrosalicylic acid colour reagent. Thereafter, the mixture was incubated in a boiling water bath for 5 min, and cooled to room temperature. The reaction mixture was then diluted by adding 10 mL of distilled water, and absorbance measured at 540 nm.

2.2.2 α-Glucosidase inhibition assay

The essential oil (50 μL) and 100 μL of α-glucosidase solution (1.0 U/mL) in 0.1 M phosphate buffer (pH 6.9) was incubated at 25°C for 10 min. Then, 50 μL of 5 mM p-nitrophenyl-α-D-glucopyranoside solution in 0.1 M phosphate buffer (pH 6.9) was added. The mixtures were incubated at 25°C for 5 min, before reading the absorbance at 405 nm in the spectrophotometer. The α-glucosidase inhibitory activity was expressed as percentage inhibition.

2.2.3 Determination of total phenol content

The total phenol content was determined according to the method of Singleton et al. Briefly, appropriate dilutions of the extract was oxidized with 2.5 mL 10% Folin-Ciocalteau’s reagent (v/v) and neutralized by 2.0 mL of 7.5% sodium carbonate. The reaction mixture was incubated for 40 min at 45°C and the absorbance was measured at 765 nm in the spectrophotometer. The total phenol content was subsequently calculated as gallic acid equivalent.

2.2.4 Determination of total flavonoid content

The total flavonoid content of the oil extracts was determined using a slightly modified method reported by Meda et al. Briefly, 0.5 mL of appropriately diluted sample extract were mixed with a 0.5 mL methanol, 50 μL 10% AlCl₃, 50 μL 1 M potassium acetate and 1.4 mL water and allowed to incubate at room temperature for 30 min. The absorbance of the reaction mixture was subsequently measured at 415 nm and the total flavonoid content calculated as quercetin equivalent.

2.2.5 Gas chromatography analysis

The analytical GC was carried out by Hewlett-Packard 5890 gas chromatograph Hewlett-Packard Corp., Palo Alto, CA equipped with Flame Ionization Detectors (FID) with DB-5 column (30 m length, 0.25 mm column id., 0.25 μm film thickness). The following conditions were applied: Injection temperature: 290°C. Injection volume: 1.0 μL. Injec-
tion mode: Split (1:50). Temperature program: 50°C for 4 min, rising at 3°C/min to 240°C, then rising at 15°C/min to 300°C, held at 300°C for 3 min. FID (290°C): H2 flow: 50 ml/min; air flow: 400 ml/min.

2.2.6 Lipid peroxidation assay

2.2.6.1 Preparation of tissue homogenates

The rats were decapitated under mild diethyl ether anesthesia and the pancreas was rapidly isolated and placed on ice and weighed. This tissue was subsequently homogenized in cold saline (1/10 w/v) with about 10 up and down strokes at approximately 1200 rev/min in a Teflon glass homogenizer. The homogenate was centrifuged for 10 min at 3000 x g to yield a pellet that was discarded, and a low-speed supernatant (S1) was kept for lipid peroxidation assay.

2.2.6.2 Lipid peroxidation and thiobarbituric acid reactions

The lipid peroxidation assay was carried out using the modified method of Ohkawa et al. Briefly, 100 μL S1 fraction was mixed with a reaction mixture containing 30 μL of 0.1 M pH 7.4 Tris-HCl buffer, extract (0–100 μL) and 30 μL of 250 μM freshly prepared FeSO₄ (the procedure was also carried out using 7 mM sodium nitroprusside). The volume was made up to 300 μL by water before incubation at 37°C for 2 h. The colour reaction was developed by adding 300 μL 8.1% SDS (Sodium dodecyl sulphate) to the reaction mixture containing S1, which was subsequently followed by the addition of 600 μL of acetic acid/HCl (pH 3.4) mixture and 600 μL 0.8% TBA (Thiobarbituric acid). This mixture was incubated at 100°C for 1 h. TBARS (Thiobarbituric acid reactive species) produced were measured at 532 nm and the absorbance was compared with that of standard curve using MDA (Malondialdehyde).

2.2.7 Nitric oxide radical scavenging assay

The scavenging effect of the extract on nitric oxide (NO) radical was measured according to the method of Mercocci et al. 100–400 μL of the oil extract was added in the test tubes to 1 ml of sodium nitroprusside solution (25 mM) and tubes incubated at 37°C for 2 h. An aliquot (0.5 ml) of the incubation was removed and diluted with 0.3 mL Griess reagent (1% sulphanilamide in 5% H₃PO₄ and 0.1% naphthalthylene diaminedihydrochloride). The absorbance of the chromophore formed was immediately read at 570 nm against distilled water as blank.

2.2.8 Fe²⁺ chelation assay

The Fe²⁺ chelating ability of the volatile oil was determined using a modified method of Minotti and Ausi [21] with a slight modification by Puntel et al. Freshly prepared 500 μM FeSO₄ (150 μL) was added to a reaction mixture containing 168 μL 0.1 M Tris-HCl (pH 7.4), 218 μL saline and the extracts (0–25 μL). The reaction mixture was incubated for 5 min, before the addition of 13 μL 0.25% 1, 10-phenanthrolinc (w/v). The absorbance was subsequently measured at 510 nm in a spectrophotometer. The Fe(II) chelating ability was subsequently calculated.

2.2.9 Fenton reaction (Degradation of deoxyribose)

The method of Halliwell and Gutteridge [23] was used to determine the ability of the extract to prevent Fe²⁺/H₂O₂ induced decomposition of deoxyribose. The extract 0–100 μL was added to a reaction mixture containing 120 μL of 20 mM deoxyribose, 400 μL of 0.1 M phosphate buffer, 40 μL of 500 mM of FeSO₄, and the volume were made up to 800 μL with distilled water. The reaction mixture was incubated at 37°C for 30 minutes and the reaction was then stopped by the addition of 0.5 mL of 28% trichloroacetic acid. This was followed by addition of 0.4 mL of 0.6% thio-barbituric acid solution. The tubes were subsequently incubated in boiling water for 20 min. The absorbance was measured at 532 nm in a spectrophotometer.

3 Results and Discussion

3.1 α-Amylase and α-glucosidase activity

Increase in blood glucose has been linked to diabetes and its complications which gives a pointer to the control of postprandial glucose. However, inhibition of carbohydrate hydrolyzing enzymes (α-amylase and α-glucosidase) would slow down the absorption of glucose, reduce plasma glucose level and consequently decrease postprandial hyperglycemia [24, 25]. α-amylase and α-glucosidase are key enzymes responsible for the breakdown of dietary carbohydrates to glucose. While α-amylase hydrolyses the internal glycosidic linkages to produce oligosaccharides, α-glucosidase breaks down the oligosaccharides to mono-saccharides especially glucose. The glucose released is absorbed across the intestinal enterocytes and thereby released into the blood.

The interaction of the clove bud oil with α-amylase and α-glucosidase is presented in Figs. 1 and 2. At the concentrations tested (40–160 μg/mL), the results revealed that the essential oil inhibited α-amylase activity in a dose-dependent fashion between 35–78%. Similarly, dose dependent inhibition of α-glucosidase activity ranged from 58–90% at the same concentrations of the sample. The IC₅₀ values for the dose inhibition of α-amylase and α-glucosidase activities by the clove bud oil are 88.89 μg/mL and 71.94 μg/mL respectively. The EC₅₀ values for acarbose inhibition of α-amylase and α-glucosidase activities are 18.63 μg/mL and 21.1 μg/mL respectively. Essential oils have been discovered to play a crucial role in carbohydrate catabolism via inhibition of carbohydrate hydrolyzing enzymes and can be possibly used as nutraceuticals for the prevention and/or management of diabetes [26–28]. The inhibitory effects of the oil on these enzymes could therefore be the possible mechanism by which it can be used in the management/treatment of diabetes. Although, the positive control (acarbose) showed to have stronger inhibition of the carbohy-
3.2 Phenolic distribution and chemical constituent

Furthermore, the antidiabetic activity of the essential oil could be linked to the phenolic content, as some phenolic rich plant extracts have been shown to inhibit starch hydrolyzing enzymes\(^2\). The results of the total phenol and flavonoid distribution in the clove bud essential oil are presented in Table 1. The total phenolic content reported as gallic acid equivalent was 12.95 mg/L, while the total flavonoid content reported as quercetin equivalent was 6.6 mg/L. The percentage yield of the oil obtained from 100 g of the powdered clove bud is shown in Table 2. In addition, the inhibitory effects of the oil on the carbohydrate hydrolyzing enzymes can also be linked to some bioactive components present in the oil. GC analysis as presented in Table 3 revealed the presence of \(\alpha\)-pinene (13.09%), \(\beta\)-pinene (45.44%), myrcene (5.13%), gamma terpinene (5.08%), pinene-2-ol (2.34%), 1,8-cineole (16.27%), linalool (0.71%), borneol (0.25%), \(\alpha\)-terpineol (0.42%), terpinen-4-ol (0.35%), neral (0.2%), geranial (0.43%) and limonene (0.12%). \(\alpha\)-pinene, 1,8-cineole and limonene have been reported to possess strong \(\alpha\)-glucosidase activity\(^2\). The inhibition of this enzyme is a good therapeutic approach for the control of hyperglycemia.
3.3 Inhibition of lipid peroxidation

The observed inhibition of MDA production in rat pancreas in the presence of Iron II (Fe$^{2+}$) (Fig. 3) revealed that the essential oil has a strong antioxidant activity. The essential oil inhibited MDA production in a dose-dependent manner with EC$_{50}$ value of 88.13 µL/L (Table 4). Fe$^{2+}$ Participates in the Fenton’s reaction by reacting with hydrogen peroxide (H$_2$O$_2$) to generate a highly reactive hydroxyl radical (OH$^-$) which is capable of causing damage to membrane lipids and cell death30. Increased level of Fe$^{2+}$ in the pancreas leads to the damage of the β-cells and results in deficiency of insulin, decreased uptake of glucose and hyperglycemia. Similarly Incubation of the rat pancreas in the presence of sodium nitroprusside (SNP) caused a significant increase in the MDA content of the pancreas as presented in Fig. 4 and EC$_{50}$(92.94 µL/L) in Table 4. SNP releases NO which is capable of reacting with superoxide to form peroxy nitrite a powerful oxidant that can induce lipid peroxidation thereby causing oxidative damage. The inhibition of SNP-induced lipid peroxidation in pancreas tissues by the clove bud essential oil (Fig. 4) could be attributed to the ability of the bioactive constituents to scavenge NO radical produced by SNP, thus protecting the alteration of the structure and function of β-cells in the islet of Langerhans of the pancreas31. Moreover, the ability of the clove bud essential oil to inhibit Fe$^{2+}$ and SNP-induced oxidative damage in the rat pancreas could be beneficial in the control and/or management of type-2 diabetes.

Table 1 The total phenolic content reported as gallic acid equivalent and total flavonoid content reported as quercetin equivalent.

<table>
<thead>
<tr>
<th>Parameter (unit)</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total phenol (mg/GAE/L)</td>
<td>12.95 ± 0.61</td>
</tr>
<tr>
<td>Total flavonoid (mg/QE/L)</td>
<td>6.62 ± 0.52</td>
</tr>
</tbody>
</table>

Values represent means of triplicate readings

Table 2 Percentage yield (w/v) of clove bud essential oil.

<table>
<thead>
<tr>
<th>Sample</th>
<th>% Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clove Bud</td>
<td>12.95</td>
</tr>
</tbody>
</table>

Table 3 Chemical composition of clove bud essential oil.

<table>
<thead>
<tr>
<th>Composant</th>
<th>RT %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camphene</td>
<td>4.780</td>
</tr>
<tr>
<td>limonene</td>
<td>7.796</td>
</tr>
<tr>
<td>α-pinene</td>
<td>9.688</td>
</tr>
<tr>
<td>β-pinene</td>
<td>11.366</td>
</tr>
<tr>
<td>benzyl alcohol</td>
<td>11.694</td>
</tr>
<tr>
<td>cis ocimene</td>
<td>12.521</td>
</tr>
<tr>
<td>myrcene</td>
<td>12.993</td>
</tr>
<tr>
<td>allo ocimene</td>
<td>13.190</td>
</tr>
<tr>
<td>pinene-2-ol</td>
<td>13.822</td>
</tr>
<tr>
<td>α-thujene</td>
<td>14.381</td>
</tr>
<tr>
<td>gamma terpinene</td>
<td>14.929</td>
</tr>
<tr>
<td>neral</td>
<td>15.292</td>
</tr>
<tr>
<td>geranial</td>
<td>15.388</td>
</tr>
<tr>
<td>isorartemisia</td>
<td>16.448</td>
</tr>
<tr>
<td>linalool</td>
<td>16.540</td>
</tr>
<tr>
<td>bornel</td>
<td>17.835</td>
</tr>
<tr>
<td>terpinen-4-ol</td>
<td>18.677</td>
</tr>
<tr>
<td>α-terpineol</td>
<td>18.773</td>
</tr>
<tr>
<td>thymyl methyl ether</td>
<td>19.725</td>
</tr>
<tr>
<td>α-copane</td>
<td>24.783</td>
</tr>
</tbody>
</table>

RT: retention time

Fig. 3 Inhibition of Fe$^{2+}$-induced lipid peroxidation in rats pancreas homogenates by essential oil from clove bud. Values represent means ± of standard deviation of triplicate readings.
3.4 Antioxidant activity

Oxidative stress contributes to the pathogenesis and progression of diabetes and studies have reported that the pancreatic β-cells are susceptible to free radical induced-oxidative damage due to the fact that they have low antioxidant enzymes such as glutathione peroxidase and superoxide dismutase. In this study, the essential oil scavenged, OH and NO in a dose-dependent manner as shown in Figs. 5 and 6 respectively. The EC\textsubscript{50} values were 90.62 μL/L (OH) and 195.77 μL/L (NO) (Table 4). Figure 7 also revealed that the essential oil had a dose-dependent Fe2+ chelating ability with EC\textsubscript{50} value of 134.15 μL/L (Table 4). OH is a highly reactive radical capable of causing DNA damage in the β-cells via the breakdown of hydrogen peroxide in a reaction triggered by Fe2+. Although NO is needed for signal transmission, blood pressure and immune response, it has been implicated in diabetic complications. Overproduction of NO can lead to initiation of lipid peroxidation. The observed radical scavenging and Fe2+ chelating ability of the clove bud essential oil could be ascribed to the presence of phenolic monoterpenes such as α-pinene, 1,8-cineole, linalool and borneol which has been revealed by Mastelic et al. to be strong radical scavengers. Hence, the radical scavenging and chelating ability of the oil could be a practical approach through which oxidative stress-induced type-2 diabetes is controlled.

Table 4 EC\textsubscript{50} of inhibition of α-amylase and α-glucosidase activities, inhibition of Fe2+ and SNP-induced lipid peroxidation in rat’s pancreas homogenates and radicals (NO, OH) scavenging and Fe2+ chelating abilities of clove bud essential oils (μL/L).

<table>
<thead>
<tr>
<th>Activity</th>
<th>EC\textsubscript{50} (μL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-amylase</td>
<td>88.89 ± 5.01</td>
</tr>
<tr>
<td>α-glucosidase</td>
<td>71.94 ± 5.26</td>
</tr>
<tr>
<td>Lipid Peroxidation</td>
<td></td>
</tr>
<tr>
<td>Fe2+ -</td>
<td>88.13 ± 0.14</td>
</tr>
<tr>
<td>SNP - induced</td>
<td>92.94 ± 0.11</td>
</tr>
<tr>
<td>Radicals scavenging ability</td>
<td></td>
</tr>
<tr>
<td>OH•</td>
<td>90.62 ± 0.42</td>
</tr>
<tr>
<td>NO•</td>
<td>195.77 ± 8.68</td>
</tr>
<tr>
<td>Fe2+ -</td>
<td>134.15 ± 14.50</td>
</tr>
</tbody>
</table>

Values represent means of triplicate.

Conclusion

The inhibition of α-amylase and α-glucosidase and Fe2+ and SNP-induced MDA production as well as radicals (OH and NO) scavenging and Fe2+ abilities are possible mechanisms by which clove bud essential oil could be used in the management and/or prevent type-2 diabetes.

References

3) Harmon, S. J.; Bogdani, M.; Parazzoli, S. D.; Sabrina, S. M.; Mak Elizabeth. A. B-cell-specific over expression of Glutathione peroxidase preserves Intranuclear...
Essential oil from Clove bud (Eugenia aromatica Kuntze) Inhibit key Enzymes Relevant to the Management of Type-2 Diabetes and some Pro-oxidant Induced Lipid peroxidation in Rats Pancreas in vitro

Fig. 5 OH’ Scavenging ability of essential oil clove bud. Values represent means ± of standard deviation of triplicate readings.

Fig. 6 NO’ Scavenging ability of essential oil clove bud. Values represent means ± of standard deviation of triplicate readings.

Fig. 7 Fe\(^{2+}\)- Chelating ability of essential oil clove bud. Values represent means ± of standard deviation of triplicate readings.

7) Jumepaeng, T.; Prachakool, S.; Luthria, D. L.; Chanthai, S. Determination of antioxidant capacity and α-amylase inhibitory activity of the essential oils from

J. Oleo Sci.