Journal of Oleo Science
Online ISSN : 1347-3352
Print ISSN : 1345-8957
ISSN-L : 1345-8957

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Effects of Pretreatment on the Yield of Peanut Oil and Protein Extracted by Aqueous Enzymatic Extraction and the Characteristics of the Emulsion
Chen LiuFu-sheng ChenRui-hao NiuYu-hang Gao
著者情報
ジャーナル フリー 早期公開

論文ID: ess20172

この記事には本公開記事があります。
詳細
抄録

Effects of comminution on peanut particle size and yield of peanut oil and protein were analyzed. Additionally, the emulsion properties (surface protein concentration, particle size, and ξ-potential) were compared. Moreover, different demulsification methods were used to investigate the emulsion stability. Results showed that the yield of peanut oil and protein was highest (87.23% and 82.05%, respectively) after dry comminution for 72 s. Upon wet comminution for 120 s, the yields of peanut oil and protein were 89.91% and 84.70%, respectively, which were both significantly higher than that obtained after dry comminution (p < 0.05). The surface protein concentration and ξ-potential of emulsion made by dry comminution (DCE) were 7.02 mg/m2 and 12.08 mV, respectively, and those of emulsion made by wet comminution (WCE) were 10.71 mg/m2 and 15.25 mV, respectively, which were significantly higher than that of DCE (p < 0.05). The volume average particle size of DCE was 3.41 µm, which was significantly higher than that of WCE (3.18 µm, p < 0.05). Collectively, these results indicated that WCE was more stable than DCE. Further, the demulsification rate of DCE was significantly higher than that of WCE when treated by freeze-thawing, pH, Papain, and Phospholipase A2 (p < 0.05). Demulsification effect of Alcalase 2.4L was the best among these five demulsification methods treated, and the demulsification rate of DCE reached 92.77%, which was slightly higher than that of WCE (92.67%), further illustrating the higher stability of WCE.

著者関連情報
© 2020 by Japan Oil Chemists' Society
feedback
Top