Effect of Maturing Stages on Bioactive Properties, Fatty Acid Compositions, and Phenolic Compounds of Peanut (*Arachis hypogaea* L.) Kernels Harvested at Different Harvest Times

Ahmad Mohammad Salamatullah¹*, Mohammed Saeed Alkaltham¹, Mehmet Musa Özcan²*, Nurhan Uslu², and Khizar Hayat¹

¹ Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh-SAUDI ARABIA
² Department of Food Engineering, Faculty of Agriculture, Selcuk University, 42031 Konya, TURKEY

Abstract: The present study investigated the effects of harvesting time on the physicochemical properties, antioxidant activity, fatty acid composition, and phenolic compounds of peanut kernels. The moisture content (air-dried basis) of peanut kernels was determined between 4.47% (September 15, 2019) and 7.93% (October 6, 2019), whereas the oil contents changed from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). The total carotenoid, chlorophyll, and phenolic contents were low throughout the harvest, showing differences depending on the harvest time. Total phenolic content changed from 0.28 mg GAE/L (September 29, 2019) to 0.43 mg GAE/L (September 8, 2019), whereas the antioxidant activity varied from 4.42% (August 25, 2019) to 4.70% (September 1, 2019). The dominant fatty acids were palmitic, oleic, and linoleic acids, depending on the harvest time, followed by stearic, behenic, arachidic, and linolenic acids. The (+)-catechin content ranged from 2.17 mg/L (September 8, 2019) to 5.15 mg/L (September 1, 2019), whereas 1,2-dihydroxybenzene content changed between 2.67 mg/L (October 6, 2019) and 5.85 mg/L (September 29, 2019). The phenolic compound content fluctuated depending on the harvest time. The results showed that peanut kernel and oil had distinctive phenolic profiles and fatty acid contents. The findings of the present study may provide information for the best time to harvest peanut to achieve its maximum health benefits.

Key words: peanut kernels, harvest time, maturity stages, functional properties

1 Introduction

Peanut (*Arachis hypogaea* L.) is an important annual oilseed plant belonging to the Leguminosae family, which is grown in both tropical and sub-tropical countries¹. Peanut contains a considerable amount of oil, ranging from 44% to 56% on dry weight basis⁴. Peanuts rank fourth in terms of production amount oilseed plant sources of vegetable oil²⁻⁶. The total fat composition of peanut kernel is approximately 10.44% and 33.51% for saturated and unsaturated fatty acids, respectively. Oleic, linoleic, and palmitic are the most abundant fatty acids in peanut kernel oil⁷. According to Jonnala et al.⁸, the health benefits of peanut consumption are related to the bioactive components in the oil fraction. Peanut is a rich source of polyphenolic antioxidant compounds, including resveratrol, tocopherol, phytoesterol, catechin, epicatechin, and queratin, which were found to reduce degenerative nerve disease, Alzheimer’s disease, hypertension, and cardiovascular disorders⁹⁻¹⁰. Polyphenols are secondary plant metabolites that synergistically act with other phytochemicals and modify total antioxidant capacity, thereby reducing oxidative stress, as well as the risk for inflammatory and chronic diseases¹¹⁻¹⁵. Peanut oil is rich in oleic and linoleic acids, with ratio of 1.3–1.4, which represent approximately 75% of the total fat content¹⁶. Peanut consumption is correlated with preventing coronary heart disease, which is attributed to its high oleic and linoleic acid contents, among other bioactive components¹³,¹⁷.

The peanut kernel is manufactured into peanut butter, oil, and other products¹⁸. China, India, Nigeria, and USA

*Correspondence to: Ahmad Mohammad Salamatullah, Department of Food Science & Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh-SAUDI ARABIA; Mehmet Musa Özcan, Department of Food Engineering, Faculty of Agriculture, Selcuk University, 42031 Konya, TURKEY
E-mail: asalamh@ksu.edu.sa (AMS), mozcan@selcuk.edu.tr (MMO)
Accepted December 18, 2020 (received for review November 11, 2020)
Journal of Oleo Science ISSN 1345-8957 print / ISSN 1347-3352 online
http://www.jstage.jst.go.jp/browse/jos/ http://mc.manuscriptcentral.com/jjocs
are the biggest peanut-producing countries. The total production of these countries constitutes approximately 69% of worldwide peanut production\(^1\)\(^,\)\(^2\). Peanut seeds are directly used or processed, as cookies, biscuits, confectionery, chocolate products, pistachio-added ice cream, peanut butter, and ready-made breakfast packages\(^3\). About 53% of peanut production in the world is allocated for cooking oil manufacture, 32% for peanut butter and cookies, and 15% for animal feed\(^4\). Moreover, oil composition is affected by the production location, cultivar, and climate (soil humidity and temperature)\(^5\)\(^,\)\(^21\). Variations in climatic conditions affect the oleic/linoleic acid ratio\(^21\). The aim of present study was to investigate the effects of harvest time on moisture, oil, carotenoid, chlorophyll, total phenol, and total flavonoid contents, antioxidant activity, fatty acid composition, and phenolic components of peanut (\textit{Arachis hypogaea} L.) kernels harvested at different periods were investigated.

2 Materials and Methods

2.1 Materials

The peanut was obtained from the field cultivated on May 15, 2019 in Osmaniye City, Turkey. Harvesting dates were scheduled on August 25, September 1, September 8, September 15, September 22, September 29, and finally on October 6, at 1-week intervals. Peanut samples were air-dried after harvesting.

2.2 Methods

2.2.1 Moisture content

The moisture content of the samples were measured at 105°C in an oven (Nüve FN055 Ankara, Turkey) until reaching a constant weight.

2.2.2 Oil content

The dried peanut material was extracted using petroleum ether in a Soxhlet apparatus for 6 h at 50°C to determine the oil content (Harwood, 1984). After drying the extract in a rotary evaporator, oil content was determined as the difference in weight between the dried peanut sample before and after extraction\(^22\).

2.2.3 Fatty acid composition

The method of ISO-5509\(^24\) was used for fatty acid methylation. Methyl esters were analyzed through gas chromatography–flame ionization detection (GC–FID) using a Shimadzu GC 2010 chromatograph equipped with a flame ionization detector (FID) on a capillary column coated with Teknokroma TR CN100, P/N TR 882162 fused silica column (60 mm length; 0.25 mm id; 0.2 mm film thickness). The temperature of the injection block and detector was 260°C. Nitrogen was used as the mobile phase, with 1.51 mL/min flow rate. The total flow rate was 80 mL/min, and split rate was also 1/40 mL/min. Column temperature was programmed at 120°C for 5 min and increased to 240°C at 4°C/min and held for 25 min at 240°C.

2.2.4 Extraction procedure

The samples were extracted according to the method previously described by Jacopini et al.\(^14\), with slight modifications. The ground samples (5 g) were added to 15 mL of methanol. The mixture was kept in an ultrasonic water-bath for 1 h, followed by centrifugation at 6,000 rpm for 10 min, and then the supernatant was filtered using a 0.45-μm membrane. Then, n-hexane (15 mL) was added and mixed using a vortex apparatus. The methanol and n-hexane layer were separated using separating funnel. This step was carried out twice with 10 mL of n-hexane. In each step, the methanol phases were collected and then evaporated at 40°C. The dried extracts were dissolved in 25 mL of methanol.

2.2.5 Chlorophyll analysis

The chlorophyll content of the peanut oil samples were measured at 670 nm using a spectrophotometer\(^25\).

\[\text{Chlorophyll (mg/kg)} = A \times \left(\frac{670 \times 106/613}{100 \times d} \right) \]

where, \(A\) is the absorbance, and \(d\) is the bathtub thickness.

2.2.6 Total phenolic content

The total phenolic content of the extracts were determined using Folin–Ciocalteu (FC) reagent as previously described by Yoo et al.\(^26\), with slight modifications. For the extraction, 20 mL of methanol water (80:20 v/v) was added to approximately 2 g of the sample and shaken for 3 h at room temperature in a shaking water bath. Then, 20 mL of n-hexane was added to the remaining extract from the filtered samples, and after phase separation was achieved in the separation funnel, the underlying methanol phase was transferred into the tubes and used for further analysis. FC reagent (1 mL) was added and mixed for 5 min after 10 mL of 7.5% Na\(_2\)CO\(_3\) was added. The solution in the tubes was mixed again, and the final volume was adjusted to 25 mL using deionized water. At the end of 1 h, the total phenolic content was determined at a wavelength of 750 nm using a spectrophotometer. The results were given as mg gallic acid equivalent (GAE)/L of fresh weight.

2.2.7 Total flavonoid content

Total flavonoid content was determined according to the method previously described by Dewanto et al.\(^27\). Methanol extracts were appropriately diluted with distilled water. Then, 0.3 mL of 5% Na\(_2\)NO\(_3\) solution was added to each test tube. After 5 min, 0.3 mL of 10% AlCl\(_3\) solution was added, and after 6 min, 2 mL of 1.0 M NaOH was added. At the end of this period, the total volume was adjusted to 5 mL using water, and the solutions in the test tubes were thoroughly mixed. The absorbance of the pink solution obtained was measured at 510 nm. The calibration curve was prepared using catechol as a standard. Flavonoid content was expressed as mg catechol equivalents (CE) per dry weight (mg CE/L DW).
Effect of Harvest Period on Some Chemical and Polyphenolic Composition of Peanut

J. Oleo Sci.

2.2.8 Antioxidant activity

The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging ability of the peanut kernel extracts was measured according to the methods described by Lee et al. The mixture was vigorously shaken and allowed to stand at room temperature for 30 min. After which, absorbance was recorded at 517 nm using a spectrophotometer. DPPH radical-scavenging ability was calculated using the following equation:

\[
\text{DPPH-scavenging effect (\%)} = \left(\frac{A0 - A1}{A0} \right) \times 100
\]

where, \(A0\) is the absorbance of the control at 30 min, and \(A1\) is the absorbance of the sample at 30 min. All samples were analyzed in triplicate.

2.2.9 Determination of phenolic compounds

HPLC analysis of phenolic compounds were performed using a Shimadzu HPLC equipped with a PDA detector and an Inertsil ODS-3 (5 µm; 4.6 × 250 mm) column. The mobile phase was a mixture of 0.05% acetic acid in water (A) and acetonitrile (B). The flow rate of the mobile phase was 1 mL/min at 30°C, and the injection volume was 20 µL. The peaks were recorded at 280 and 330 nm using a PDA detector. The gradient program was as follows: 0–0.10 min 8% B; 0.10–2 min 10% B; 2–27 min 30% B; 27–37 min 56% B; 37–37.10 min 8% B; and 37.10–45 min 8% B. The total running time per sample was 60 min.

2.3 Statistical analyses

A complete randomized split-plot block design was used, and analysis of variance (ANOVA) one way was performed using the JMP software version 9.0 (SAS Inst. Inc., Cary, N.C., USA). All analyses were done in triplicate, and the results are presented as mean ± standard deviation (MSTAT-C) of independent harvest times.

3 Results and Discussion

3.1 Effects of harvest time on the physiochemical properties, bioactive compound content, and antioxidant activity of peanut kernels

Table 1 presents the physicochemical properties, bioactive compound content, and antioxidant activity of peanut kernels harvested at 1-week intervals starting from August 25 to October 6, 2019. Results showed several variations, depending on the harvest time. Statistically significant differences (\(p<0.05\)) were observed among the moisture, oil, total carotenoid, chlorophyll, total phenol, and total flavonoid contents, as well as antioxidant activity of peanut kernels harvested at different times. The moisture content (air-dried basis) of peanut kernels ranged from 4.47% (September 15, 2019) to 7.93% (October 6, 2019), whereas the oil content of peanut kernels ranged from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). With the progress of the harvest time, a certain decrease was observed in the moisture content of peanut kernels; however, a partial increase was observed in the last harvest time. With the progress of the harvest time until September 29, 2019, the oil content of peanut kernels was increased.

Mora-Escobedo et al. reported that raw and roasted peanut kernels contained 2.91% and 2.1% moisture, and 47.14% and 51.87% lipids, respectively. The moisture and oil contents of peanut cultivars grown in Tunisia ranged from 7.3% to 8.48% to 45.32% to 48.53%, respectively. Mora-Escobedo et al. reported that the oil content of eight peanut varieties grown in Mexico ranged from 37.9% to 56.3%. Chukwumah et al. reported that peanut kernels harvested at different times. The moisture content (air-dried basis) of peanut kernels ranged from 4.47% (September 15, 2019) to 7.93% (October 6, 2019), whereas the oil content of peanut kernels ranged from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). With the progress of the harvest time, a certain decrease was observed in the moisture content of peanut kernels; however, a partial increase was observed in the last harvest time. With the progress of the harvest time until September 29, 2019, the oil content of peanut kernels was increased.

Mora-Escobedo et al. reported that raw and roasted peanut kernels contained 2.91% and 2.1% moisture, and 47.14% and 51.87% lipids, respectively. The moisture and oil contents of peanut cultivars grown in Tunisia ranged from 7.3% to 8.48% to 45.32% to 48.53%, respectively. Mora-Escobedo et al. reported that the oil content of eight peanut varieties grown in Mexico ranged from 37.9% to 56.3%. Chukwumah et al. reported that peanut kernels harvested at different times. The moisture content (air-dried basis) of peanut kernels ranged from 4.47% (September 15, 2019) to 7.93% (October 6, 2019), whereas the oil content of peanut kernels ranged from 45.95% (October 6, 2019) to 49.25% (September 22, 2019). With the progress of the harvest time, a certain decrease was observed in the moisture content of peanut kernels; however, a partial increase was observed in the last harvest time. With the progress of the harvest time until September 29, 2019, the oil content of peanut kernels was increased.

Table 1 Moisture content, bioactive compounds, and antioxidant activity values of peanut kernels harvested at different maturity stages.

<table>
<thead>
<tr>
<th>Harvest times</th>
<th>Moisture (%)</th>
<th>Oil (%)</th>
<th>Total carotenoid (mg/kg)</th>
<th>Chlorophyll (mg/kg)</th>
<th>Total phenolic content (mg/kg)</th>
<th>Total flavonoid (mg/kg)</th>
<th>Antioxidant activity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 25</td>
<td>5.12 ± 0.01c</td>
<td>47.10 ± 0.50d</td>
<td>0.77 ± 0.00e</td>
<td>0.22 ± 0.00e</td>
<td>0.35 ± 0.00fc</td>
<td>8.76 ± 0.00b</td>
<td>4.42 ± 0.03e</td>
</tr>
<tr>
<td>September 1</td>
<td>4.76 ± 0.02d**</td>
<td>48.20 ± 0.20c</td>
<td>0.69 ± 0.00f</td>
<td>0.26 ± 0.00d</td>
<td>0.31 ± 0.00d</td>
<td>8.44 ± 0.00c</td>
<td>4.70 ± 0.00a</td>
</tr>
<tr>
<td>September 8</td>
<td>4.50 ± 0.30f</td>
<td>46.95 ± 1.15e</td>
<td>0.88 ± 0.00c</td>
<td>0.42 ± 0.00b</td>
<td>0.43 ± 0.00a</td>
<td>7.79 ± 0.00e</td>
<td>4.67 ± 0.01b</td>
</tr>
<tr>
<td>September 15</td>
<td>4.47 ± 0.11g</td>
<td>49.00 ± 0.30b</td>
<td>0.93 ± 0.00b</td>
<td>0.15 ± 0.00f</td>
<td>0.31 ± 0.00d</td>
<td>9.09 ± 0.00a</td>
<td>4.63 ± 0.01c</td>
</tr>
<tr>
<td>September 22</td>
<td>4.57 ± 0.20e</td>
<td>49.25 ± 0.35a</td>
<td>0.51 ± 0.00g</td>
<td>0.14 ± 0.00g</td>
<td>0.31 ± 0.00d</td>
<td>8.11 ± 0.00d</td>
<td>4.66 ± 0.01b</td>
</tr>
<tr>
<td>September 29</td>
<td>5.32 ± 0.02b</td>
<td>46.95 ± 0.35e</td>
<td>0.80 ± 0.00d</td>
<td>0.32 ± 0.00c</td>
<td>0.28 ± 0.00e</td>
<td>7.79 ± 0.00e</td>
<td>4.57 ± 0.01d</td>
</tr>
<tr>
<td>October 6</td>
<td>7.93 ± 0.21a</td>
<td>45.95 ± 0.15f</td>
<td>1.34 ± 0.00a</td>
<td>0.73 ± 0.00a</td>
<td>0.36 ± 0.00bb</td>
<td>8.76 ± 0.00b</td>
<td>4.66 ± 0.00b</td>
</tr>
</tbody>
</table>

*standard deviation; **values within each column followed by different letters are significantly different at \(p < 0.05\).
had a high lipid content (approximately 46%) rich in monounsaturated fatty acids. Raw, oven-roasted, and microwave-roasted peanut kernel oil contents were 27.13%, 33.21%, and 41.79%, and 26.12%[33]. The amount of oil contained in oilseeds may vary, depending on the climatic conditions, agricultural techniques, and especially, seed characteristics. The total carotenoid content of kernels ranged from 0.51 mg/kg (September 22, 2019) to 1.34 mg/kg (October 6, 2019), whereas the chlorophyll content of peanut kernels ranged from 0.14 mg/kg (September 22, 2019) to 0.73 mg/kg (October 6). Generally, the carotenoid and chlorophyll contents exhibited an increasing trend throughout the harvest time. The total phenolic content of peanut kernels ranged from 1.0 and 2.1 mg GAE/g DW to 18.60 mg GAE/L (September 8, 2019). However, total flavonoid content of the peanut kernel samples ranged from 7.79 mg/L (September 8 and 29, 2019) to 9.09 mg/L (September 15, 2019). Chukwumah et al.[30] reported that the total phenolic and flavonoid contents of raw peanut kernels were 25.71 mg catechin equivalent (CE)/g and 0.01 mg GAE/g, respectively. Although the carotenoid, chlorophyll, and total phenolic contents of peanut kernel samples were found at low levels throughout the harvest time, they showed partial differences, depending on the harvest time. The antioxidant activity of the peanut oil extracts ranged from 4.42 mg GAE/L (September 22, 2019) to 18.30 mg GAE/L (September 29, 2019), whereas the stearic acid content of the oil samples was ranged from 2.76% (September 1, 2019) to 3.21% (September 22, 2019). While depending on the harvest time, the oleic acid content of peanut oil ranged from 58.02% (September 15, 2019) to 65.20% (September 22, 2019), and linoleic acid content ranged from 18.60% (September 22, 2019) to 25.48% (September 29, 2019). Additionally, the arachidic acid content of peanut kernel oils ranged from 1.30% (October 6, 2019) to 1.43% (September 22, 2019), whereas the behenic acid content ranged from 2.37% (October 6, 2019) to 3.17% (September 1, 2019). Other fatty acids identified in peanut kernel oils obtained at different harvest times were found at low levels (<0.08%). Myristic acid was only identified in peanut kernel oil harvested on September 29, 2019. Statistically significant differences were observed among the fatty acid composition of peanut kernel oils, depending on the harvest times ($p < 0.05$). With the advancement of harvest time, stearic acid, oleic acid, and linoleic acid were increased until a certain harvest time, whereas polyunsaturated fatty acids, such as linolenic acid, were decreased. Their amounts were increased until a certain harvest time.

3.2 Effects of harvest time on the fatty acid content of peanut kernels

Table 2 shows the fatty acid composition of oil extracted from peanut kernels harvested at 1-week intervals (August 25–October 6, 2019). The dominant fatty acids were palmitic, oleic, and linoleic acids, depending on the harvest time, followed by stearic, behenic, arachidic, and linolenic acids. The palmitic acid content of peanut kernel oils ranged from 7.58% (first harvest time on August 25, 2019) to 9.16% (September 15, 2019), whereas the stearic acid content of the oil samples was ranged from 2.76% (September 1, 2019) to 3.21% (September 22, 2019). While depending on the harvest time, the oleic acid content of peanut oil ranged from 58.02% (September 15, 2019) to 65.20% (September 22, 2019), and linoleic acid content ranged from 18.60% (September 22, 2019) to 25.48% (September 29, 2019). Additionally, the arachidic acid content of peanut kernel oils ranged from 1.30% (October 6, 2019) to 1.43% (September 22, 2019), whereas the behenic acid content ranged from 2.37% (October 6, 2019) to 3.17% (September 1, 2019). Other fatty acids identified in peanut kernel oils obtained at different harvest times were found at low levels (<0.08%). Myristic acid was only identified in peanut kernel oil harvested on September 29, 2019. Statistically significant differences were observed among the fatty acid composition of peanut kernel oils, depending on the harvest times ($p < 0.05$). With the advancement of harvest time, stearic acid, oleic acid, and linoleic acid were increased until a certain harvest time, whereas polyunsaturated fatty acids, such as linolenic acid, were decreased. Their amounts were increased until a certain harvest time.

Table 2 Fatty acid composition of peanut kernel oils harvested at different maturity stages (%).

<table>
<thead>
<tr>
<th>Fatty acids</th>
<th>August 25</th>
<th>September 1</th>
<th>September 8</th>
<th>September 15</th>
<th>September 22</th>
<th>September 29</th>
<th>October 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myristic</td>
<td>– *</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.03 ± 0.00</td>
<td>–</td>
</tr>
<tr>
<td>Palmitic</td>
<td>7.58 ± 0.27**g</td>
<td>8.21 ± 0.01d</td>
<td>8.38 ± 0.04b</td>
<td>9.16 ± 0.04a</td>
<td>7.95 ± 0.04f</td>
<td>8.27 ± 0.01c</td>
<td>8.14 ± 0.00e</td>
</tr>
<tr>
<td>Stearic</td>
<td>2.80 ± 0.02***c</td>
<td>2.76 ± 0.00e</td>
<td>2.81 ± 0.00d</td>
<td>2.85 ± 0.02c</td>
<td>3.21 ± 0.01a</td>
<td>2.97 ± 0.00b</td>
<td>2.82 ± 0.02d</td>
</tr>
<tr>
<td>Oleic</td>
<td>62.08 ± 0.22b</td>
<td>62.11 ± 0.02c</td>
<td>62.27 ± 0.02b</td>
<td>58.02 ± 0.10d</td>
<td>65.20 ± 0.05a</td>
<td>58.12 ± 0.01d</td>
<td>61.81 ± 0.23c</td>
</tr>
<tr>
<td>Linoleic</td>
<td>21.85 ± 0.05e</td>
<td>21.91 ± 0.00d</td>
<td>21.42 ± 0.01f</td>
<td>24.87 ± 0.14b</td>
<td>18.60 ± 0.01g</td>
<td>25.48 ± 0.03a</td>
<td>22.46 ± 0.13c</td>
</tr>
<tr>
<td>Arachidic</td>
<td>1.37 ± 0.01c</td>
<td>1.41 ± 0.00ab</td>
<td>1.32 ± 0.00d</td>
<td>1.32 ± 0.02d</td>
<td>1.43 ± 0.01a</td>
<td>1.37 ± 0.01c</td>
<td>1.30 ± 0.03e</td>
</tr>
<tr>
<td>Linolenic</td>
<td>1.15 ± 0.01a</td>
<td>1.10 ± 0.00b</td>
<td>1.03 ± 0.01c</td>
<td>0.96 ± 0.01d</td>
<td>0.89 ± 0.00f</td>
<td>0.93 ± 0.00e</td>
<td>0.95 ± 0.02d</td>
</tr>
<tr>
<td>Behenic</td>
<td>2.65 ± 0.03b</td>
<td>3.17 ± 0.03a</td>
<td>2.58 ± 0.01c</td>
<td>2.52 ± 0.04e</td>
<td>2.45 ± 0.01f</td>
<td>2.54 ± 0.03d</td>
<td>2.37 ± 0.08g</td>
</tr>
<tr>
<td>Ercic</td>
<td>0.06 ± 0.00a</td>
<td>0.06 ± 0.00a</td>
<td>0.06 ± 0.00a</td>
<td>0.05 ± 0.00b</td>
<td>0.05 ± 0.00b</td>
<td>0.05 ± 0.00b</td>
<td>0.05 ± 0.00b</td>
</tr>
<tr>
<td>Arachidonic</td>
<td>0.05 ± 0.00b</td>
<td>0.08 ± 0.00a</td>
<td>0.05 ± 0.00b</td>
<td>0.08 ± 0.00a</td>
<td>0.05 ± 0.00b</td>
<td>0.03 ± 0.01c</td>
<td>0.05 ± 0.00b</td>
</tr>
</tbody>
</table>

*nonidentified; **standard deviation; ***values within each row followed by different letters are significantly different at $p < 0.05$.

4

J. Oleo Sci.
and then they were decreased. The major fatty acids found in the peanut oil samples were palmitic (11.9–13.2%), oleic (45.2–53.8%), and linoleic (25.1–29.2%) acids.\(^4\) Sebei et al.\(^4\) reported that peanut kernels contained 11.89–17.45% palmitic, 1.93–3.43% palmitoleic, 4.01–4.59% stearic, 27.16–32.63% oleic, 39.65–41.85% linoleic, 2.22–2.73% erucic, and 2.04–2.82% lignoceric acid. These results were similar to those obtained in different studies.\(^1\) These differences can be probably due to agricultural differences, compared with the results of previous studies.

These differences were quite pronounced in palmitic, stearic, oleic, and linoleic acids. Results showed several differences, compared with the results of previous studies. These differences can be probably due to agricultural factors, genetic structure, locations, climatic factors, maturation time, several analytical conditions, and solvent types.

3.3 Effect of harvest time on the phenolic compounds of peanut kernels

Table 3 illustrates the amounts of phenolic compounds of peanut kernels harvested at a 1-week interval. Depending on the harvest time, the amount of phenolic compounds of peanut kernels exhibited partial variations. Statistically significant differences were observed among the amount of phenolic compounds of peanut kernels harvested at different maturity stages (\(p < 0.05\)). The key phenolic compounds of peanut kernels were gallic acid, 3,4-dihydroxybenzoic acid, (\(+\))-catechin, and 1,2-dihydroxybenzene. The gallic acid content of peanut kernels ranged from 1.36 mg/L (September 8, 2019) to 2.85 mg/L (October 6, 2019), whereas the 3,4-dihydroxybenzoic acid content of peanut samples ranged from 1.73 mg/L (August 25, 2019) to 3.56 mg/L (October 6, 2019). Additionally, the (\(+\))-catechin content of the peanut kernel samples changed between 2.17 mg/L (September 8, 2019) and 5.15 mg/L (September 1, 2019), whereas the 1,2-dihydroxybenzene content of peanut kernels ranged from 2.67 mg/L (October 6, 2019) to 5.85 mg/L (September 29, 2019). However, while the syringic acid content of kernels was found between 0.65 mg/L (October 6, 2019) and 1.35 mg/L (September 1, 2019), the caffeic acid content of peanut kernel samples ranged from 0.49 mg/L (September 15, 2019) to 1.11 mg/L (September 22, 2019). Also, the rutin-trihydrate content of peanut kernels ranged from 0.42 mg/L (September 15, 2019) to 1.06 mg/L (September 22, 2019), whereas the \(\text{trans}\)-ferulic acid content ranged from 0.12 mg/L (September 15, 2019) to 0.73 mg/L (September 22, 2019). Additionally, the quercetin content of peanut kernels ranged from 0.20 mg/L (October 6, 2019) to 0.52 mg/L (August 25, 2019), and theisorhamnetin content of kernel samples ranged from 0.21 mg/L (October 6, 2019) to 0.46 mg/L (August 25, 2019). In a previous study, the predominant phenolic compounds pre-

Table 3

Phenolic compounds of peanut kernels harvested at different maturity stages (mg/L).

<table>
<thead>
<tr>
<th>Phenolic compounds</th>
<th>August 25</th>
<th>September 1</th>
<th>September 8</th>
<th>September 15</th>
<th>September 22</th>
<th>September 29</th>
<th>October 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallic acid</td>
<td>2.41 ± 0.94d</td>
<td>2.22 ± 0.43e</td>
<td>1.36 ± 1.45g</td>
<td>2.07 ± 1.06f</td>
<td>2.53 ± 0.78c</td>
<td>2.59 ± 0.25b</td>
<td>2.85 ± 0.63a</td>
</tr>
<tr>
<td>3,4-Dihydroxybenzoic acid</td>
<td>1.73 ± 1.03g**</td>
<td>2.92 ± 0.11c</td>
<td>2.13 ± 2.11e</td>
<td>1.84 ± 0.72f</td>
<td>2.25 ± 0.68d</td>
<td>3.02 ± 0.46b</td>
<td>3.56 ± 0.29a</td>
</tr>
<tr>
<td>((+))-Catechin</td>
<td>3.17 ± 1.63f</td>
<td>5.15 ± 0.42a</td>
<td>2.17 ± 1.53g</td>
<td>3.67 ± 1.08d</td>
<td>4.57 ± 1.49e</td>
<td>5.06 ± 2.80b</td>
<td>3.57 ± 0.60c</td>
</tr>
<tr>
<td>1,2-Dihydroxybenzene</td>
<td>3.18 ± 2.96d</td>
<td>4.85 ± 0.87c</td>
<td>2.95 ± 2.42f</td>
<td>3.05 ± 1.46e</td>
<td>4.99 ± 1.92b</td>
<td>5.85 ± 0.53a</td>
<td>2.67 ± 1.05g</td>
</tr>
<tr>
<td>Syringic acid</td>
<td>0.99 ± 0.55c</td>
<td>1.35 ± 0.44a</td>
<td>0.67 ± 0.47c</td>
<td>0.85 ± 0.32d</td>
<td>1.07 ± 0.33b</td>
<td>1.34 ± 0.15a</td>
<td>0.65 ± 0.28f</td>
</tr>
<tr>
<td>Caffeic acid</td>
<td>0.71 ± 0.45c</td>
<td>1.05 ± 0.16b</td>
<td>0.72 ± 0.45c</td>
<td>0.49 ± 0.18f</td>
<td>1.11 ± 0.29a</td>
<td>1.00 ± 0.12c</td>
<td>0.78 ± 0.48d</td>
</tr>
<tr>
<td>Rutin trihydrate</td>
<td>0.52 ± 0.35f</td>
<td>0.77 ± 0.20b</td>
<td>0.65 ± 0.34d</td>
<td>0.42 ± 0.20g</td>
<td>1.06 ± 0.59a</td>
<td>0.67 ± 0.14e</td>
<td>0.63 ± 0.15c</td>
</tr>
<tr>
<td>(p)-Coumaric acid</td>
<td>0.05 ± 0.02e</td>
<td>0.14 ± 0.01a</td>
<td>0.06 ± 0.02d</td>
<td>0.06 ± 0.04d</td>
<td>0.08 ± 0.06c</td>
<td>0.09 ± 0.03b</td>
<td>0.06 ± 0.00d</td>
</tr>
<tr>
<td>(\text{trans})-Ferulic acid</td>
<td>0.23 ± 0.10e</td>
<td>0.67 ± 0.18b</td>
<td>0.20 ± 0.15f</td>
<td>0.12 ± 0.02e</td>
<td>0.73 ± 0.37a</td>
<td>0.60 ± 0.42c</td>
<td>0.27 ± 0.15d</td>
</tr>
<tr>
<td>Apigenin-7-glucoside</td>
<td>0.19 ± 0.04f</td>
<td>0.43 ± 0.16b</td>
<td>0.45 ± 0.21a</td>
<td>0.22 ± 0.04e</td>
<td>0.40 ± 0.11c</td>
<td>0.27 ± 0.16d</td>
<td>0.27 ± 0.20d</td>
</tr>
<tr>
<td>Resveratrol</td>
<td>0.10 ± 0.07b</td>
<td>0.01 ± 0.00e</td>
<td>0.04 ± 0.02d</td>
<td>0.05 ± 0.02e</td>
<td>0.13 ± 0.07a</td>
<td>0.04 ± 0.01d</td>
<td>0.04 ± 0.01d</td>
</tr>
<tr>
<td>Quercetin</td>
<td>0.52 ± 0.08a</td>
<td>0.32 ± 0.19e</td>
<td>0.22 ± 0.22f</td>
<td>0.26 ± 0.04d</td>
<td>0.42 ± 0.32b</td>
<td>0.31 ± 0.20d</td>
<td>0.20 ± 0.05g</td>
</tr>
<tr>
<td>(\text{trans})-Cinnamic acid</td>
<td>0.05 ± 0.02e</td>
<td>0.11 ± 0.04a</td>
<td>0.03 ± 0.00f</td>
<td>0.08 ± 0.04c</td>
<td>0.08 ± 0.06c</td>
<td>0.07 ± 0.05d</td>
<td>0.09 ± 0.09b</td>
</tr>
<tr>
<td>Naringenin</td>
<td>0.14 ± 0.04a</td>
<td>0.13 ± 0.02b</td>
<td>0.08 ± 0.04d</td>
<td>0.09 ± 0.02e</td>
<td>0.06 ± 0.02e</td>
<td>0.09 ± 0.04c</td>
<td>0.09 ± 0.04c</td>
</tr>
<tr>
<td>Kaempferol</td>
<td>– ***</td>
<td>–</td>
<td>0.11 ± 0.00</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Isorhamnetin</td>
<td>0.46 ± 0.19a</td>
<td>0.25 ± 0.06e</td>
<td>0.28 ± 0.24c</td>
<td>0.26 ± 0.02d</td>
<td>0.26 ± 0.05d</td>
<td>0.39 ± 0.16b</td>
<td>0.21 ± 0.06f</td>
</tr>
</tbody>
</table>

*standard deviation; **values within each row followed by different letters are significantly different at \(p < 0.05\); ***nonidentified.
4 Conclusion

Depending on the maturity stage, all the peanut kernel samples that were analyzed exhibited differences in their bioactive compounds, antioxidant activity, fatty acid composition, and phenolic compounds. With the progress of the harvest time, a certain decrease was observed in the moisture content of peanut kernels; however, a partial increase was observed in the last harvest time. With the progress of the harvest time until September 29, 2019, the oil content of peanut kernels was increased. With the advancement of harvest time, stearic acid, oleic acid, and linoleic acid were increased until a certain harvest time, whereas polyunsaturated fatty acids, such as linolenic acid, were decreased. Their amounts were increased until a certain harvest time, and then they were decreased. The amounts of other phenolic compounds of peanut kernels were found at low concentrations, depending on the maturity stages of the peanut kernels. It was determined that the amount of gallic acid decreased until a certain harvest time and then increased with the progress of the harvest time. The amount of gallic acid, which was 2.41% on August 25, 2019, decreased on September 8, 2019 (1.36%). Then, it started to increase, and its highest value was 2.85% on October 6, 2019. Fluctuations were recorded for (+)-catechin and 1,2-dihydroxybenzene contents as they were increased until a certain harvest time and then were decreased. Rosales-Martinez et al. determined that raw and roasted peanut kernels contained 5.84 and 8.24 μg/g resveratrol, 114.35 and 122.14 μg/g catechin, 262.23 and 238.04 μg/g gallic acid; 31.54, 17.22, and 29.61 μg/g p-coumaric acid; 47.89, 28.11, and 38.61 μg/g ferulic acid; 15.74, 8.62, and 14.71 μg/g quercetin; and 57.68, 38.63, and 49.24 μg/g cinnamic acid, respectively, as the key phenolic compounds. The amounts of other phenolic compounds of peanut kernels were found at low concentrations, depending on the maturity stages of the peanut kernels. It was determined that the amount of gallic acid decreased until a certain harvest time, and then they were decreased. The results showed that peanut kernel and oil had distinctive phenolic profiles and fatty acid contents. The findings of the present study may provide information for the best time to harvest peanut to achieve its maximum health benefits.

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group no. RG-1441-360.

Conflict of Interest

The authors declare no conflict of interest.

References

Effect of Harvest Period on Some Chemical and Polyphenolic Composition of Peanut

J. Oleo Sci.

5. Enhanced recovery of antioxidant compounds from hazelnut (Coriulus avellana L.) in vivo based on extraction optimization: Phytochemical profile and biological activities. Antioxidants 8, 460 (2019).

36) Özcan, M.; Seven, S. Physical and chemical analysis and fatty acid composition of peanut, peanut oil and peanut butter from COM and NC-7 cultivars. *Grasas Aceites* 54, 12-18 (2003).

