ノート

海産ケイソウ Phaeodactylum tricornutum の産生する遊離イコサペンタエン酸
板橋 豊・原田 直和・太田 亨・松永 勝彦
北海道大学水産学部（〒041 函館市港町 3丁目 1-1）

Free Icosapentaenoic Acid in the Marine Diatom Phaeodactylum tricornutum
Yutaka ITABASHI, Naokazu HARADA, Toru OTA, and Katsuhiko MATSUNAGA
Faculty of Fisheries, Hokkaido University (3-1-1, Minato-cho, Hakodate-shi, 〒041)

Abstract: Determination was made of free fatty acids (FFA) of the marine diatom Phaeodactylum tricornutum. P. tricornutum in the stationary phase in a batch culture system was found to contain 18% FFA of total lipid, along with triacylglycerols (TG), hydrocarbons, sterols and polar lipids (PL). Major fatty acids of FFA, TG and PL were 14:0, 16:0, 16:1 (n-7), 16:2 (n-4), 16:3 (n-4), 18:1 (n-9) and 20:5 (n-3). FFA composition was characterized by much 20:5 (n-3), constituting 38% of total FFA. 20:5 (n-3) content in TG and PL was only 9 and 17%, respectively. Acetone powder prepared from P. tricornutum showed phospholipase A (PLaseA) activity toward PL and virtually no lipase activity for TG could be detected. Free 20:5 (n-3) in P. tricornutum would thus appear to be released primarily from PL by PLaseA. The greater activity of PLaseA1 compared to PLaseA2 is discussed.

Key words: Phaeodactylum tricornutum, free fatty acid, icosapentaenoic acid, Phospholipase A1.

1 緒 言

遊離脂肪酸 (FFA) が生体内に多量に存在することはまれであるが、ある種の微細藻はこれを藻体内に著量蓄積することが知られている1,2). この微細藻が産生する FFA は抗酸化性や抗酸藻性などの生物活性を示し、赤潮原因藻では魚貝類へい死の原因物質の一つであると考えられている。これら微細藻から多量の FFA を藻体内に蓄積するかは不明であり、生化学的にも興味が持たれてい る。

ケイソウの一種 Phaeodactylum tricornutum は増殖速度が大きく、藻体内に脂質を多く含むため石油の代替エネルギーとして有望視され、培養条件や脂質抽出法、さらには大量培養プロセスのエネルギーコストに至るまで幅広く検討されている3)~5). また、エコサペンタエン酸 (20:5 (n-3)) 含量が高く、20:5 (n-3) の有望な資源の一つとみなされている6). P. tricornutum の脂質成分および脂質酸組成については上記の他にも多くの報告7)~14) があるが、FFA に関する知見はきわめて少なく、その組成や生成機構に関する報告は見当たらない。

連絡者: 板橋 豊

本研究では、P. tricornutum の脂質中に FFA が著量含まれること、特に、20:5 (n-3) がトリアシルグリセリン (TG) や囲脂質、リン脂質などの極性脂質 (PL) よりも FFA として多量に存在することを明らかにした。また、本藻体より FFA 産生にかかわると考えられるホスホリバーゼ A (PLaseA) 活性を認め、遊離 20:5 (n-3) が主に PLaseA1 の作用により、PL から生成することを推察した。

2 実験

2-1 培養と脂質の抽出
f2 培地上に P. tricornutum を接種し (初濃度 4×10^4 cells/mL), 照度 4000 lux, 明暗サイクル 12L-12D, 温度 20℃の条件で培養した。培養開始後 2 週間目の定常期の試料 (5×10^6 cells/mL) から、遠心分離により藻体を心得たのち、Bligh–Dyer 法15) で脂質を抽出した。

2-2 脂質クラスの分析
イタロスキャン TH-10（ヤトロン製）を使用して脂質のクラス別組成を求めた。クロロホルムに溶解した総脂質の 1% 溶液 1 μL をシリカロッド (Chromarod SIII) にスポットしたのち、クロロホルム/アセトン (96
272

4, vol/vol) で展開した。風乾後、クロロホルム/ベンゼン/メタノール/濃アンモニア水 (30 : 30 : 0.06 : 0.016, by vol.) を用いて再度展開して、氷点水素 (HC), TG, ステロール (ST), FFA および PL の各脂質クラスを分離した。水素圧力 0.7 kg/cm², 空気流量 1.4 L/min, スキャン速度 2.4 s/rod の条件下で各成分を検出しピーク面積比を求めた。

2.3 濃層クロマトグラフィー (TLC)
厚さ 0.5 mm の薄層板 (Merk 社製シリカゲル G, 20×20 cm) に、クロロホルムに溶解した総脂質をバンド状にスポットした。n-ヘキサン/ジクロロエチル/酢酸 (80 : 20 : 1, vol/vol/vol) を用いて展開したのち、0.2 % 2',7'-ジクロンフルオロオレイン-エタノール溶液を嘔露して UV 下で成分を検出した。分離した TG, FFA および PL 画分を TLC 板より切りとり、エチルエーテルで抽出した。各成分を 5% 塩酸・メタノールを用いて脂肪酸メチルエステルに変換したのち、TLC (n-ヘキサン/ジクロロエチル 80 : 20, vol/vol) で精製して、ガスクロマトグラフィー (GLC) 用検体とした。

2.4 GLC
FID を装備した島津 GC-9 A ガスクロマトグラフに Rascot Silar 5 CP キャリヤーカラム（長さ 50 m, 内径 0.25 mm, 日本クロマト工業社製）を取り付け、キャリヤーガス (水素) 流速 0.8 mL/min, スプリット比 1/50, カラム温度 180～225℃ (0.4℃/min) の条件でメチルエステルを分析した。ピーク成分の保持時間および面積比の測定にはクロマトバック C-R 6 A に (島津製) を用いた。ピーク成分の同定は前報に従って行った18)。

2.5 PLaseA およびリパーゼ活性の測定
P. tricornutum 種体より、常法に従ってアセトン粉末を調製し、これを酵素として実験に使用した。PLaseA 活性は Chang らの方法17) を参考にして測定した。すなわち、100 mM トリス-塩酸緩衝液 (pH 8.0, 0.5 M) 中に、ジオレオイルホスファチジルコリン (PC, シグマ社製) 5 mg, アセトン粉末 10 mg および 50 mM CaCl₂ 0.15 mL を含む反応液を 37℃で 20 h かくはん (1000 rpm) しながらインキュベートした。反応後、生成したオレイン酸をジクロロエチルで抽出した。これをメチルエステルに変換して GLC で定量した。内部標準にはヘプタデカン酸 (シグマ社製) を用いた。PLaseA 活性は、アセトン粉末 1 mg が 1 h に遊離するオレイン酸の nmol数で表した。リパーゼ活性は、PLaseA 活性の測定と同じ条件下でトリオレオイルグリセリンを加水分解し、生成するジオレオイルグリセリンを高速液体クロマトグラフィーで定量求めた18)。

3 結果

3.1 脂質クラス組成

本培養条件下で得られた P. tricornutum の脂質含量は約 3% (海藻量) であった。主な脂質クラスは、糖脂質・リノール酸より成る PL が 52.4% と最も多く、次いで FFA が 18.2%, TG が 9.7%, HC が 8.4%, ST が 8.3% であった。

3.2 脂肪酸組成
Table-1 に示す。これら脂質クラスの主要脂肪酸は、いずれのクラスにおいても、14 : 0, 16 : 0, 16 : 1 (n-7), 16 : 2 (n-4), 18 : 1 (n-7), 16 : 3 (n-4), 18 : 2 (n-6) であり、総脂質の脂肪酸組成を詳細に調べて以来の報告13,19)と同様であった。飽和脂肪酸は TG で 34% と最も多く、次いで PL で 23%, FFA で 19% であった。

モノオレイン酸についても同様の傾向が認められ、TG において 37%, PL において 26%, FFA において 23% 含まれていた。逆に、ポリオレイン酸は FFA で最も多く (58%), 次いで PL (52%), TG (29%) の順であった。特に、20 : 5 (n-3) 含有量は PL で 17%, TG で 9% にすぎなかったが、FFA では 38% と高い値を示した。

3.3 PLaseA 活性

適用した条件下で、P. tricornutum 種体から調製したアセトン粉末は、PC からオレイン酸を 2.3 n mol/mg/h 減少了。一方、トリオレオイルグルセリンを基質に使用した場合、ジオレオイルグルセリンはほとんど検出されず、明らかにリパーゼ活性は認められなかった。

4 考 察

海産ケイソウ Nitzschia pungens の脂質中には FFA が 40% も含まれることが知られている19)。同様に、ケイソウ Thalassiosira oceanica でも全脂質中、23% が FFA である20)。P. tricornutum の脂質中にも FFA が 8% 程度存在することが認められる13) が、本研究では 18% も含まれており、PL に次ぐ主要な脂質成分であった。微細藻におけるこのような FFA の多量の蓄積は、細胞の増殖過程や栄養状態（培地組成）など環境の変化に伴って、細胞内の PLaseA が活性化し、PL が加水分解した結果であると推測される。本研究において、P. tricornutum の種体から調製したアセトン粉末が TG に対してよりよいリパーゼ活性を示す、PC を加水分解して FFA を生成したことはこの推測を支持する。

海産ケイソウ Thalassiosira pseudonana は、FFA を全脂質中 0.4% しか含有していないが、その最多成分は 20 : 5 (n-3) であり（全脂質中、24%）、TG よりも FFA に約 2 倍多く含まれることが報告されている20)。この結果は、20 : 5 (n-3) が FFA の主要成分である点で本研究における P. tricornutum の FFA 組成と類似する。Arao ら21) は、P. tricornutum の PL を構成する
Table 1 Fatty Acid Composition of the Lipids from Phaeodactylum tricornutum (wt %)*.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>TG</th>
<th>FFA</th>
<th>PL</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 : 0</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>13 : 0</td>
<td>1.1</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>14 : 0</td>
<td>6.9</td>
<td>7.0</td>
<td>7.5</td>
</tr>
<tr>
<td>15 : 0</td>
<td>2.0</td>
<td>1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>16 : 0</td>
<td>21.2</td>
<td>9.0</td>
<td>13.6</td>
</tr>
<tr>
<td>17 : 0</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>18 : 0</td>
<td>2.3</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>20 : 0</td>
<td>0.1</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>Σ Saturates</td>
<td>34.0</td>
<td>18.5</td>
<td>22.8</td>
</tr>
<tr>
<td>16 : 1 (n-9)</td>
<td>4.4</td>
<td>1.5</td>
<td>0.8</td>
</tr>
<tr>
<td>16 : 1 (n-7)</td>
<td>23.0</td>
<td>18.8</td>
<td>19.1</td>
</tr>
<tr>
<td>16 : 1 (n-5)</td>
<td>0.3</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>17 : 1 (n-8)</td>
<td>0.4</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>18 : 1 (n-9)</td>
<td>6.5</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>18 : 1 (n-7)</td>
<td>0.8</td>
<td>0.4</td>
<td>1.7</td>
</tr>
<tr>
<td>18 : 1 (n-5)</td>
<td>1.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Σ Monoenes</td>
<td>36.6</td>
<td>23.2</td>
<td>25.6</td>
</tr>
<tr>
<td>16 : 2 (n-4)</td>
<td>3.4</td>
<td>4.9</td>
<td>6.0</td>
</tr>
<tr>
<td>16 : 3 (n-4)</td>
<td>3.3</td>
<td>6.3</td>
<td>14.1</td>
</tr>
<tr>
<td>16 : 4 (n-1)</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18 : 2 (n-9)</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18 : 2 (n-6)</td>
<td>2.5</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>18 : 3 (n-6)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>18 : 3 (n-3)</td>
<td>1.3</td>
<td>0.7</td>
<td>0.8</td>
</tr>
<tr>
<td>18 : 4 (n-3)</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20 : 2 (n-6)</td>
<td>0.4</td>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>20 : 3 (5, 11, 14)</td>
<td>1.2</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>20 : 3 (n-6)</td>
<td>0.2</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>20 : 3 (n-3)</td>
<td>1.2</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>20 : 4 (n-6)</td>
<td>0.3</td>
<td>0.9</td>
<td>0.5</td>
</tr>
<tr>
<td>20 : 4 (5, 11, 14, 17)</td>
<td>1.4</td>
<td>2.1</td>
<td>1.3</td>
</tr>
<tr>
<td>20 : 4 (n-3)</td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>20 : 5 (n-3)</td>
<td>8.7</td>
<td>38.0</td>
<td>17.1</td>
</tr>
<tr>
<td>22 : 4 (n-3)</td>
<td>0.6</td>
<td>0.7</td>
<td>2.3</td>
</tr>
<tr>
<td>22 : 5 (n-3)</td>
<td>0.9</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>22 : 6 (n-3)</td>
<td>2.3</td>
<td>0.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Σ Polyenes</td>
<td>29.4</td>
<td>58.3</td>
<td>51.6</td>
</tr>
</tbody>
</table>

* TG, triacylglycerols; FFA, free fatty acids; PL, polar lipids.

20 : 5 (n-3) はグリセリノ骨格の sn-1 位に偏って分布することを明らかにしている。Yongmanitchai と Ward13) も P. tricornutum の PL の分子種を詳細に調べた結果, sn-2 位に 20 : 5 (n-3) を含む分子種は少なく, 20 : 3 (n-3) は主に sn-1 位に存在することを明らかにしている。これらの結果は, P. tricornutum に存

文 献

2) 村上昌弘, 山口善明, 微細藻由来の生体内活性物質 - II, “海洋微生物の生体内活性物質”恒星社厚生閣 (1990) p. 73.
5) (財)工業開発研究所, 石油植物による燃料油生産に関する調査 (1983).
16) 板橋 塁, 高木 徹, 油化学, 29, 855 (1980).
両端にフルオロアルキル基を有する新規アクレートオリゴマーによるポリエステルのSR加工

川瀬 徳三*1・河本 久美*1・藤井 富美子*1・
皆川 基*1・沢田 美夫*2
*1 大阪市立大学生活科学部（〒558 大阪市住吉区杉本）
*2 奈良工業高等専門学校化学工学科（〒639-11 大和郡山市矢田町）

過酸化フルオロアルカノイルとポリオキシエチレンメタクリレートから得られる、両端にフルオロアルキル基を有する新規アクレートオリゴマーのSR加工剤としての有効性について、ポリエステルの表面改質から検討した。

一方、時間とともに水の接触角は減少し未改質の時よりも低くなった。これは、水中のような親水性環境下ではポリオキシエチレン基が表面へしか出して来てオリジナル表面よりも親水性へと変化する(HILIP-FLOP機構)ことによると説明できる。モデル洗浄実験の結果も、これら新規オリゴマーがFLIP-FLOP型のSR加工剤として機能することを支持した。

新しい水溶性切削油添加剤としてのアダマンタン誘導体

渡辺 昭次*1・藤田 力*1・坂本 昌己*1・
中川 博視*2・大森 義久*2
*1 千葉大学工学部応用化学科（〒263 千葉市稲毛区弥生町）
*2 NEOS中央研究所（〒520-32 滋賀県甲賀市甲西町大池町）

アダマンタンカルボニルクロリドとアミノアルコール、アミノ酸の反応で多数の付加物を合成し、水溶性切削油剤としての性能を検討した。

海産ケイソンPhaeodactylum Tricornutumの産生する遊離テサベンタエン酸

板橋 豊・原田 直和・太田 亨・松永 勝彦
北海道大学水産学部（〒041 函館市港町3-1-1）

海産珪藻Phaeodactylum Tricornutumに存在する遊離脂肪酸（FFA）の組成を求めた。FFAは、バッチャ処理した定期的な試料の油脂中に18%含まれており、トリオイルグリセリン(TG)、炭化水素、ステロールおよび極性脂質(PG)ともに、P. tricornutumの主要な脂質成分であった。FFA、TG及びPLの主要構成脂肪酸は14:0、16:0、16:1(n-7)、16:2(n-4)、16:3(n-4)、18:1(n-9)、および20:5(n-3)であり、FFA中に38%が20:5(n-3)である。

