Abstract: Adult stem cells are multipotent and can be induced experimentally to differentiate into various cell lineages. Such cells are therefore a key part of achieving the promise of tissue regeneration. The most studied stem cells are those of the hematopoietic and mesenchymal lineages. Recently, mesenchymal stem cells were demonstrated in dental tissues, including dental pulp, periodontal ligament, and dental follicle. The dental follicle is a loose connective tissue that surrounds the developing tooth. Dental follicle stem cells could therefore be a cell source for mesenchymal stem cells. Indeed, dental follicle is present in impacted teeth, which are commonly extracted and disposed of as medical waste in dental practice. Dental follicle stem cells can be isolated and grown under defined tissue culture conditions, and recent characterization of these stem cells has increased their potential for use in tissue engineering applications, including periodontal and bone regeneration. This review describes current knowledge and recent developments in dental follicle stem cells and their application. (J Oral Sci 52, 541-552, 2010)

Keywords: bone regeneration; dental follicle; stem cells; tissue engineering; periodontal regeneration.

Introduction

New approaches in tissue engineering are being developed to reconstruct and restore the function of damaged or diseased tissues and organs (1). The term “tissue engineering” was coined in 1993 by Langer and Vacanti (1) to describe the process by which tissues and organs are regenerated by cell transplantation with or without a scaffold. Almost 20 years later, tissue engineering has not advanced as hoped, despite many important achievements.

In dentistry, interest in tissue engineering research has increased rapidly among researchers and institutes. One reason for this is that dentists are familiar with tissue regeneration techniques, such as those that use tertiary dentin in dental pulp and periodontium in guided tissue regeneration, which is now common in dental hospitals (2-3). Furthermore, the development of techniques to generate whole teeth is ongoing (4-7). A key factor in perfecting this technology within the context of modern tissue engineering is the use of adult stem cells.

Stem cells are defined by their capacity to generate daughter cells with different and more restricted properties. In human postnatal dental tissue, five different sources of mesenchymal stem cells (MSCs) have been already identified: dental pulp (8-9), periodontal ligament (10), exfoliated deciduous teeth (11), dental follicle (DF) (12), and root apical papilla (13). These dental stem cells are derived from the neural crest, and thus have a different origin from bone marrow-derived MSCs, which are derived from mesoderm. On the other hand epithelial stem cells have not been identified in postnatal dental tissues. However, we recently demonstrated that the epithelial rest
of Malassez (ERM) can generate enamel tissues (14), which suggests that epithelial stem cells may indeed be present in ERM (manuscript in preparation).

This review will focus on dental follicle stem cells (DFSCs) because of the alternative potential applications for these cells in bone and periodontal tissue engineering. As compared with bone marrow-derived MSCs, DFSCs are easily isolated from impacted teeth and readily grown under culture conditions. Harvesting of DFSCs from extracted teeth is noninvasive, although tooth extraction itself is an invasive technique.

Function of dental follicle during tooth development

The tooth is a complex organ consisting of distinctly different hard and soft tissue areas, including enamel, dentin, cementum, and pulp. The formation of the hard tissue structures is controlled by ameloblasts, odontoblasts, cementoblasts, and cell differentiation and morphogenesis is regulated by reciprocal epithelial-mesenchymal interaction (15). Teeth have the specific feature of being the only organ that penetrates from the host’s internal tissue, ie, the jawbone, through the “oral integumentary layer” and into the oral cavity. Tooth roots within the jawbone are firmly anchored in the alveolar bone proper, and a thin layer of membrane, called the periodontal ligament (PDL), resides between the tooth and bone. The PDL is essential for many functions that support the tooth.

During root development, cementogenesis begins during root formation. During this stage, the inner and outer enamel epithelia fuse to form the bilayered Hertwig’s epithelial root sheath (HERS), which then induces differentiation of DFSCs into cementoblasts or osteoblasts (16-18). According to classical theory, DFSCs are the origin of the periodontium, including the cementum, PDL, and alveolar bone (19-22), and this developmental cascade confirms the existence of stem cells in the dental follicle. Although one study suggested that cementoblasts may arise from HERS, (18), other research has indicated that all cementoblasts arise from DFSCs (17). The DF is a loose connective tissue sac derived from ectomesenchymal tissues. It surrounds the developing tooth and plays different roles during the life of a tooth (23-25) (Fig. 1). The DF is formed at the cap stage of tooth germ development by an ectomesenchymal progenitor cell population originating from cranial neural crest cells (20,25). In addition to its function in periodontium development, the DF is also critical for the coordination of tooth eruption (26,27). During the tooth eruptive process, it remains adjacent to the tooth crown of unerupted or impacted teeth (28). The DF also regulates osteoclastogenesis and osteogenesis for eruption. Alternatively, under pathological conditions, the DF can proliferate into stratified squamous epithelium to generate dental cysts (29). Hence, it has several key functions in both the development of the periodontium and resorption of bone during tooth development.

Mesenchymal stem cells in the dental follicle

Recently, the multiple differentiation potential of adult stem cells has been extensively studied in basic research and for therapeutic use. The most studied adult stem cell types are hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) (30). MSCs possess the capacity for self-renewal and differentiation into a variety of cells, including osteocytes, adipocytes, chondrocytes (30), myocytes (31), and neurons (32). Moreover, MSCs support hematopoiesis and enhance the engraftment of HSCs after co-transplantation, and both experimental and clinical studies clearly show that MSCs reduce the incidence of graft-versus-host disease (33-34). These data suggest that MSCs are a valuable cell source for cell-based tissue-engineering therapy. However, the search for alternative sources of MSCs is of considerable importance because bone marrow aspiration is an invasive procedure for obtaining MSCs, and there are significant age-related...
decreases in the frequency and differentiation potential of adult stem cells (35). One of the most promising sources of MSCs is from tissues discarded during the course of medical practice. Umbilical cord and umbilical cord blood are particularly advantageous because they can be obtained noninvasively (36,37). As compared with umbilical cord, umbilical cord blood appears to be a less common source for MSCs (36). Umbilical cord contains two arteries (the UCAs) and one vein (the UCV) surrounded by mucoid connective tissue known as Wharton’s jelly (UCWJ). We demonstrated that MSCs from UCA, UCV, and Wharton’s jelly have multiple differentiation potential, including osteoblast, adipocyte, and chondrocyte generation. Furthermore, cells derived from the UCV have a high colony-forming unit-fibroblast (CFU-F) frequency and slow proliferation rate, which suggests that UCV-derived cells have the greatest potential as a source for MSCs (37). However, the feasibility of tissue engineered from MSCs derived from UCV, UCA, and UCWJ remains to be evaluated in clinical studies.

Most people have an impacted third molar that does not cause occlusion and subsequently have the impacted tooth extracted to avoid inflammation or orthodontic therapy. Such extracted teeth usually contain DF and are commonly discarded as medical waste. Hence, the DF is a candidate source for isolating MSCs. Recent evidence has suggested that MSCs are present in the DF of the tooth germ at various stages of development in different species (12,38-42). As with other cell types, DFSCs adhere to plastic and form colonies in vitro. Handa et al. (40) were the first to report the existence of progenitor cells in bovine DF after transplantation. Cultured bovine DFSCs at the root-forming stage, in combination with hydroxyapatite, successfully generated cementum tissues and fibroblasts in vivo. Interestingly, cementum formation was observed only at the interface of the hydroxyapatite beads in the implants. Unlike alveolar osteoblasts, DFSCs do not form bone tissue by this method. Although it is unclear whether DFSCs have the characteristics of mesenchymal stem cells, they are clearly progenitor cells for cementoblasts (40). Human DF progenitor cells were also reported in the DF of wisdom teeth at the root-formation stage (42). Subsequently, mouse DFSCs at the crown-formation stage were shown to differentiate into osteogenic, adipogenic, and chondrogenic lineages (43), while another study showed that rat DFSCs have the capacity for osteogenesis, adipogenesis, and neurogenesis, but not chondrogenesis (12). Thereafter, postnatal MSCs from human dental tissue such as DF at the apex of tooth root, periodontal ligament, and dental pulp were isolated and compared to various other dental stem cells (41). The results showed that DFSCs have excellent proliferation rates and a capacity for osteogenesis and adipogenesis (41); however, their capacity for chondrogenesis remains unknown. Another study examined the differentiation capacity of human DFSCCs during early root development. Under specific culture conditions, these cells differentiated toward multiple mesenchymal-derived cell types, such as osteoblasts, chondrocytes, and adipocytes (44). Finally, human DFSCs were found to have osteogenic differentiation capacity, but no adipose differentiation was detected. However, in that study, the observation period after induction was only 14 days, which might be shorter than the induction period. Chondrogenic differentiation was also not detected (45). These results indicate that MSCs reside in DF, but vary with respect to differentiation capacities across species and development stage (e.g., the crown- or root-formation stages). To elucidate this apparent multiple-differentiation potential of DFSCs, it might be necessary to clarify the differentiation ability of homogeneous cell populations derived from a single cell. Human studies using clonal cells from the DF may explain the discrepancies in previous results.

We designed an experiment to examine the differentiation capacity of DFSCs, using clonal expansion by limiting dilution (46). We obtained 12 single cell-derived cell populations that formed CFU-Fs in vitro. Each clonal cell population uniformly displayed one of three distinct morphologies under phase-contrast microscopy, which we termed HDF1, HDF2, and HDF3. Under tissue culture conditions, only HDF2 was spindle-shaped and had small processes consistent with periodontal ligament cells and bone marrow-derived cells. The other cell types had a polygonal morphology, and HDF1 cells were smaller than HDF3 cells (Fig. 2). Cell size is related to cell cycle (47), proliferation (48,49), and differentiation (50,51); smaller cells are more likely to have stem cell properties, and larger cells are more likely to be differentiated (52). Gene expression patterns in all HDFs also varied in our RT-PCR analysis.

Next, we examined the stem cell potential of the three HDF clonal populations (46). While all three proliferated in culture for more than 15 passages, proliferation assays showed that HDF1 cells had a higher proliferation potential than did HDF2 and HDF3 cells at six passages. All three cell populations could differentiate along the osteogenic (Fig. 3) and adipogenic lineages (Fig. 4) at six passages, but with very different potentials; HDF1 cells showed the highest osteogenic differentiation potential. All cell populations could also be driven to differentiate into adipocytes, although HDF3 cells had the highest propensity to differentiate along this pathway. However, none of the three clonal populations showed chondrocyte differentiation.
under culture conditions that have produced chondrocyte lineage cells from other stem cell populations. Because all three HDF cell types showed multiple differentiation potential, our studies suggest that the DF contains heterogeneous stem cell populations. In fact, of four studies that tested the differentiation capacity of human DFSCs (41,44,45,53), only one demonstrated differentiation into chondrocytes (44), which suggests that the DFSCs obtained in our study are already committed to an osteogenic or adipogenic lineage. In other words, in DFSCs, the ramification point between osteoblast and adipocyte lineages is later than that of osteogenic and chondrogenic lineages.

There is, however, one report of heterogeneous DFSCs. Using SV40 transfection from miceDF, Luan et al. (43) generated three distinct immortalized cell lines that were vastly different in cell shape, alkaline phosphatase activity, mineralization pattern, and gene expression pattern; they were also clearly different from a same-stage, alveolar bone-derived cell line (43). Interestingly, all their cell lines showed remarkably different potentials regarding mineralization characteristics in vitro. However, their study did not evaluate the tissue-forming capability of these cell populations (43). In addition, although it is
known that the DF contains heterogeneous stem cells, the question remains as to whether alveolar bone, cementum, and periodontal ligament can arise from these stem cells differentiating at the target tissue.

The switch of stem and progenitor cells from proliferation to differentiation is probably a crucial step in tissue development (54) and is therefore a key mechanism to understand if novel tissue engineering techniques are to be developed. Appropriately triggered DF can differentiate toward a cementoblast, osteoblast, or periodontal ligament lineage. However, the factors and mechanisms that regulate follicle cell differentiation remain undefined. Morsczeck et al. (42) demonstrated that human DFSCs are capable of differentiating into periodontal tissues in vivo, while Yokoi et al. (38) found that immortalized DFSCs isolated from mouse incisor tooth germs have the capacity to generate periodontal tissue in vivo. We reported that the gene expression patterns of DFSCs are consistent with those of PDL fibroblasts after culturing on collagen I matrix (55). Furthermore, several key genes, including DLX3 (56), transcription factor ZBTB16, and NR4A3 (57), have been implicated in the switch from undifferentiated status to differentiation lineage. The mechanisms of differentiation from stem cells to periodontal ligament, cementoblasts, and osteoblasts is expected to be elucidated in the future (Fig. 5).

If MSCs are to be used in clinical trials, we must ensure that they maintain a normal karyotype to avoid possible malignant tumor formation after transplantation. HDF1, 2, and 3 cells derived from DF at 15 passages were analyzed for chromosomal G-banding by a commercial testing laboratory. The karyotypes in three tested DFSCs lines were surprisingly abnormal (unpublished data). Other studies isolated and expanded MSCs from second-trimester amniotic fluid for prenatal diagnosis. The karyotype of the MSCs was analyzed at the fourth and six passages and remained genetically stable (58). Moreover, gingival tissue-derived MSCs showed normal karyotypes at passages 6 and 16. All MSCs had a normal diploid number of chromosomes (2n, n = 23) (59). However, these results from other research groups are not consistent with ours, perhaps due to methodological differences in the isolation method (MSCs were divided into single cells in most of the other studies) and the region from which the MSCs were obtained. We have to determine the passage number at which the DFSCs chromosomes became abnormal.

Furthermore, although DFSCs have been extensively studied, many key points remain unresolved, such as the exact location of the obtained DFSCs. It has been suggested that MSCs reside around small blood vessels and are part of pericytes (60-63). Crisan et al. (59) proved that MSCs found throughout fetal and adult tissues are members of the pericyte family of cells. Ultimately, several dental MSC lines were developed and analyzed; however, the different tissue-forming potentials among them remain unknown. DFSCs seem to have the ability to generate hard tissue and/or periodontal ligament-tissue at ectopic sites in immunodeficient mice. In the next phase of research, investigators should examine the tissue-forming potential of DFSCs within periodontal and bone defects that are presumed to be associated with clinical disease. The next chapter addresses these issues in terms of tissue-forming capability.

Bone-tissue-forming capability of dental follicle cells

A key factor in successfully elucidating the cellular basis of tissue regeneration is determining the multipotential capabilities of stem cells to differentiate into desired target tissues (64). Recently, considerable attention has focused on the role of MSCs in bone formation, with the hope that they might serve as a possible source of stable differentiated osteoblasts. In dental practice, bone diseases and defects are common. Such patients are usually treated with autogenous bone grafts or artificial materials such as hydroxyapatite. Bone-tissue engineering has emerged as a tool with the potential to replace autologous tissue grafting in restoring lost tissue (65). Although BMSCs have
been thoroughly studied for their clinical application in generating new bone, a possible similar role for DFSCs in bone repair of critical-size defects remains to be investigated. As mentioned above, DFSCs have the capacity to induce calcification in vitro (42) and in vivo (39). Thus, new bone formation for typical bone defects might be possible using stem cells derived from DFSCs.

We designed two studies to examine the tissue-forming capability of DFSCs in vivo. First, we investigated the potential of porcine DFSCs for bone formation by means of cell transplantation in a critical-size defect created in calvaria of immunodeficient rats. The results were compared with those of porcine periodontal ligament stem cells and porcine alveolar bone-marrow derived MSCs (66). Each cell pellet was transplanted into the bone defect, and CFU-F assays were used to quantify functional MSCs. All cell populations displayed colony formation and CFU-F numbers were higher after culture in all cell populations. At 4 weeks, gross examination revealed that the defects in all groups were occupied by soft or hard tissue, and bone formation was confirmed by hematoxylin and eosin staining in all specimens (Fig. 6). Interestingly, there were no significant differences in new bone formation areas among the specimens. These results suggest that the potential for bone formation using DFSCs is similar to that obtained using periodontal ligament stem cells and bone marrow-derived stem cells.

We next compared the potential of each identified human DFSC population (HDF1, 2, and 3) for bone formation using the same procedures (46), i.e., transplantation of a cell pellet into a surgically created full-thickness critical-size partial defect in immunodeficient rats. In all groups, hematoxylin and eosin staining showed new bone formation and evidence of vascular invasion at 4 weeks post-transplantation (Fig. 7). The appearance of new bone formation was similar to that seen in intramembranous ossification, due to the absence of cartilage formation. The volume of new bone formation in animals transplanted with HDF1 or 2 cells was markedly greater than in those transplanted with HDF3 cells. Animals transplanted with control cells showed fibrous tissues and only very small amounts of bone at the defect site. These results suggest that although it is unclear whether transplanted cells directly differentiated into osteoblasts to create new bone, human DFSCs clearly support new bone formation.

Therapy using bone-tissue engineering requires the desired cells to be expanded in vitro until the number is sufficient for transplanting into the defect. Therefore, the next step in investigating DFSCs as a potential source is determining the optimal culture conditions for cell proliferation. The roles of various soluble factors in promoting osteogenic differentiation in bone marrow-derived MSCs have been extensively studied (67,68). However, little is known regarding how extracellular matrix promotes DFSC proliferation. We thus investigated culture systems in order to improve the DFSC yield via culture-surface modification (66). Four types of extracellular matrix (collagen type I, collagen type IV, laminin, fibronectin) were evaluated for their effects on cell growth and differentiation in DFSCs. We used single-cell cloning to harvest porcine DFSCs at the crown formation stage and confirmed osteogenic differentiation by analysis of alkaline

![Fig. 6](image)

Fig. 6 In vivo new bone formation (arrows) after cell transplantation in surgically created calvarial defects in immunosuppressed rat.

![Fig. 7](image)

Fig. 7 (A)-(D) Panoramic view of surgically created calvarial defects in immunosuppressed rat 4 weeks after cell transplantation in tissue stained with hematoxylin-eosin. (A) HDF1 implant, (B) HDF2 implant, (C) HDF3 implant, (D) no cell implant.
phosphatase activity and gene expression. Collagen type I (Col-I) and fibronectin enhanced cell proliferation, but collagen type IV (Col-IV) inhibited cell growth. However, while both Col-I and Col-IV facilitated osteogenic differentiation, as shown by ALP activity, fibronectin did not. Interestingly, laminin inhibited both cell growth and osteogenic differentiation. It is interesting that human DFSCs also showed reduced cell adhesion on laminin, in addition to small cell size and actin stress fibers (Morsczeck, unpublished data). In an unpublished study, human DFSCs showed reduced potential for cell proliferation on laminin, as compared with cells on normal cell culture surfaces. Although a previous study of differentiated human DFSCs showed increased expression of laminin genes after osteogenic differentiation (56), DFSCs do not strongly interact with this extracellular matrix protein. These results suggest that Col-I is effective for both cell growth and differentiation of DFSCs into osteogenic lineage (66). If the number of undifferentiated DFSCs must be rapidly increased, fibronectin may be useful in promoting their growth. However, it is difficult to maintain MSCs in culture using serum, because serum contains growth factors that drive differentiation. We thus need to further explore optimal culture conditions for maintaining and expanding MSCs.

Periodontal tissue engineering

The periodontium is a topographically complex tissue consisting of soft and mineralized connective tissue and epithelium. We propose that there are four important factors in achieving successful periodontal regeneration. First, a functional epithelial seal must be present to prevent the migration of epithelial cells into periodontal defects. Second, new acellular cementum must be regenerated on the root surface. Third, alveolar bone height needs to be restored. Finally, new Sharpey fibers must be inserted into the newly formed root cementum. Recently, new techniques of cell transplantation have been developed to regenerate periodontium.

Periodontal ligament stem cells are a candidate cell source for periodontal regeneration. Human periodontal ligament stem cells (PDLCS) have previously been successfully isolated from extracted human teeth (10). Ex vivo-expanded PDLCs are capable of regenerating a typical cementum/periodontal ligament-like structure when transplanted into immunocompromised mice using hydroxyapatite/tricalcium phosphate (HA/TCP) as a carrier (10). Because of their periodontal ligament derivation and their capacity to differentiate into osteoblasts, cementoblasts, and fibroblasts, PDLCS were the first candidate stem cells for periodontal tissue engineering (69). More importantly, these cells have the potential to form collagen fibers and generate cementum/PDL-like structures in vivo and, thus, serve as reliable sources for periodontal tissue reconstruction (69). Nondental stem cells such as bone marrow mesenchymal stem cells (70), adipose-derived stem cells (71), embryonic stem cells (72), and induced pluripotent stem cells (iPS) (73) have also been investigated for periodontal regeneration. These cells all have the potential for differentiating into osteoblasts, cementoblasts, and fibroblasts, and to form cementum/PDL-like structures under appropriate conditions. Cultured periosteum is another possible cell source for periodontal regeneration. Mizuno et al. (73) grafted autologous cultured cell membrane derived from periosteum into a surgically created class III furcation defect in dogs. The formation of cementum, periodontal ligament-like tissues, and alveolar bone was evident 3 months after the grafting procedure. Another research group reported a treatment using periosteum-derived cells in human periodontal disease. Yamamiya et al. (3) showed that cultured periosteum combined with platelet-rich plasma and hydroxyapatite resulted in clinical improvements in human infrabony defects (3).

At present, bone marrow-derived stromal cells and periodontal ligament stem cells are used as the cell source for periodontal regeneration. As mentioned above, because periodontium originates from the DF, DFSCs could become an alternative cell source for periodontal regeneration therapy. We believe that further investigation of this potential is warranted.

Initially, we sought to generate whole tooth using the classical tissue engineering techniques developed by the Forsyth Group (74). However, we experienced difficulties in developing a method to generate a whole tooth using postnatal dental stem cells (7,75-79). As an alternative to whole tooth replacement, we envisage partial replacement of the tooth by engineering the tooth root using DFSCs. This represents a root-shaped dentin mass associated with the periodontium, including cementum, PDL, and alveolar bone. Previously, we developed a method to generate dentin mass using the recombination technique. Enamel organ epithelium and dental pulp were isolated from the third molar of six-month-old pigs, and individual aggregated cell populations were recombined and transplanted into the omentum of immunodeficient rats. Enamel and dentin mass were observed, but the periodontium was not (unpublished data). As mentioned above, we developed this technique to expand DFSCs with the potential of cementum formation. To verify the feasibility of tooth root engineering, another experiment was designed to test whether cementum and PDL formation can be induced in the space between
dentin and bone (80). Firstly, enamel organ epithelium, dental pulp, and dental follicle were harvested from the third molars of six-month-old pigs. DFSCs were then expanded in vitro. In an Eppendorf tube, subcultured DFSCs were seeded in the bottom of the tube, after which primary dental pulp cells, primary enamel organ epithelial cells, and subcultured DFSCs were successively added (Fig. 8). This recombination, which mimics the tooth primordia, was then inserted into a cavity inside the shaft of the bone and later transplanted into the omentum of 6-week-old immunocompromised rats.

After 24 weeks, a large amount of dentin mass was observed (Fig. 9A). In addition, odontoblasts were present along the formed dentin, a thick layer of cementum-like tissue was covered on the formed dentin (Fig. 9B), and spaces between the regenerated dentin and bone were filled with connective tissues (Fig. 9C). Collagen fiber-like tissues resembling the PDL were perpendicularly attached to the cementum-like layer (Fig. 9C). However, collagen fiber-like tissues were not observed on the surface of cementum without bone anchorage (Fig. 9B). Histological analyses confirmed the possibility of producing periodontium from subcultured DFSCs (80). In addition, this recombination technique for regenerating tooth root could be used for transplantation into alveolar bone to restore tooth loss, while the crown is restored with traditional prosthetic treatment. This is our new approach to regenerating tooth using postnatal dental stem cells.

Conclusion

We described DFSCs and their potential application in dental tissue engineering. DF is easily obtained from clinically discarded third molar extractions, and can be stored frozen for many years. As a potential cell source, dental stem cell banking may be a necessary step, and further progress on establishing individualized induced pluripotent stem cells for dental tissue regeneration is imminent. Therefore, DFSCs could be a useful cell source.
for tissue engineering therapy. Interestingly, DFSCs also have the potential to differentiate into neural cells, and future studies will undoubtedly investigate the potential of DFSCs as a cell source for treating diseases in other germ layers.

References
49. Angello JC, Pendergrass WR, Norwood TH,

60. Tomita M, Uysal AC, Ogura R, Hyakusoku H,

