Questionnaire Survey of Metal Plate Construction

by

Yoshinori SATO, Toshiki ICHIWATA, Junji TSUKUI, Keiichi ISHIGAMI, Shigeyuki KASAI, Koichiro UEDA, Tomotaka TAKEDA, Masayuki SHIRANE, Hiromi GOTO, Toshikazu IBONAI, Akihisa NAKAMURA, Eiichi MORITA and Katsuzo OHKI

I. Introduction

Metal plates are available as cast plates or swaged plates [1]. At present, swaged plates are not much used, and cast plates are used in most cases. The construction of a cast plate [2,3] requires a number of machines, and the material and technical processes are complex [4–6]. In Japan, the construction of metal plates for patients attending private dental clinics is entrusted to private laboratories. At the Nihon University Dental Hospital, metal plates for patients are made at a metal plate laboratory within the hospital itself. The number of plates made at this laboratory ranges from 100 to 150 a year.

Accordingly, we conducted a questionnaire survey of 98 private metal plate laboratories in all parts of Japan, in order to assess the existing state of metal-plate construction. Thirty-four laboratories responded, and their answers are analyzed and reported on in this paper.

II. Survey Method

Questionnaires were sent to 98 private metal-plate laboratories which are members of a Trade Association formed by their operators, and the questions referred to metal plates constructed during 1982. Thirty-four laboratories replied, and these replies were analyzed. The survey was in two parts, one covering general subjects and the other methods of construction. Incidentally, differences in the numbers of answers arise from the fact that no answers were given to certain questions by certain respondents.

III. Results

1. General Subjects
 1) Number of Metal Plates Constructed

 The relationship between the number of metal plates constructed, including full and partial plates, and the number of laboratories which made them, is shown in Table 1 and Figs. 1 and 2. As can be seen in Fig. 2, the percentage of laboratories making less than 1,000 plates a year was the highest at 47.8%. The largest number of plates constructed at any one laboratory was 12,600.

Dept. of Removable Partial Denture Prosthodontics, Nihon University School of Dentistry, Tokyo.
Figure 1.

Table 1

<table>
<thead>
<tr>
<th>Number constructed</th>
<th>Number of cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 999</td>
<td>11</td>
</tr>
<tr>
<td>1000 ~ 1999</td>
<td>5</td>
</tr>
<tr>
<td>2000 ~ 2999</td>
<td>1</td>
</tr>
<tr>
<td>3000 ~ 3999</td>
<td>4</td>
</tr>
<tr>
<td>4000 ~ 5000</td>
<td>1</td>
</tr>
<tr>
<td>10000 or more</td>
<td>1</td>
</tr>
</tbody>
</table>
Number of full metal plates constructed

<table>
<thead>
<tr>
<th>Number Constructed</th>
<th>Number of Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 499</td>
<td>16</td>
</tr>
<tr>
<td>500 ~ 999</td>
<td>3</td>
</tr>
<tr>
<td>1000 ~ 1499</td>
<td>2</td>
</tr>
<tr>
<td>1500 ~ 1999</td>
<td>2</td>
</tr>
<tr>
<td>2000 ~ 2499</td>
<td>0</td>
</tr>
<tr>
<td>2500 ~ 3000</td>
<td>1</td>
</tr>
</tbody>
</table>
Number of partial metal plates constructed

<table>
<thead>
<tr>
<th>Number of cases</th>
<th>Number constructed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 ~ 999</td>
<td>14</td>
</tr>
<tr>
<td>1000 ~ 1999</td>
<td>3</td>
</tr>
<tr>
<td>2000 ~ 2999</td>
<td>4</td>
</tr>
<tr>
<td>3000 ~ 3999</td>
<td>1</td>
</tr>
<tr>
<td>9000 ~ 10000</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 5.

Table 3

Fig. 6.
Ratio of number of partial metal plates to total

Fig. 7.

<table>
<thead>
<tr>
<th>Partial Metal Plate %</th>
<th>Office</th>
</tr>
</thead>
<tbody>
<tr>
<td>0~29</td>
<td>0</td>
</tr>
<tr>
<td>30~39</td>
<td>1</td>
</tr>
<tr>
<td>40~49</td>
<td>1</td>
</tr>
<tr>
<td>50~59</td>
<td>5</td>
</tr>
<tr>
<td>60~69</td>
<td>6</td>
</tr>
<tr>
<td>70~79</td>
<td>7</td>
</tr>
<tr>
<td>80~89</td>
<td>6</td>
</tr>
<tr>
<td>90~100</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. 8.
2) Full Metal Plates

The relationship between the number of full metal plates constructed and the number of laboratories which made them, is shown in Table 2 and Figs. 3 and 4. As can be seen in Fig. 4, the percentage of laboratories making less than 500 a year was the largest at 66.7%.

3) Partial Metal Plates

The relationship between the number of partial metal plates constructed and the number of laboratories which made them is shown in Table 3 and Figs. 5 and 6. As can be seen in Fig. 6, the percentage of laboratories making less than 1,000 a year was the largest at 60.9%.

4) Ratio of Partial Metal Plates to Total

The ratio of the number of partial metal plates constructed in the year at the various laboratories against the total number of metal plates constructed is given in Table 4 and Figs. 7 and 8. As can be seen in Table 4, partial metal plates accounted for more than 50% at 25 laboratories, and for less than 50% only at 2 laboratories. This means that partial plates account for more than 50% of the total at most laboratories.

2. Methods of Construction

1) Ventilation Provided for Laboratories
 Provided: 100% Not provided: 0%

2) Implements and Materials Used
 Use one company’s system only: 38% (13 labs.)
 Use various companies’ systems: 62% (21 labs.)

3) Type of Surveyor Used
 Ney’s products: 77% Other products: 23%

4) Most Frequently-Used Clasps
 (1) Maxilla
 (i) Kennedy class I and II
 I-bar clasp: 44% Aker’s clasp: 33% Others: 23%
 (ii) Kennedy class III
 Aker’s clasp: 91% I-bar clasp: 6% Others: 3%
 (2) Mandible
 (i) Kennedy class I and II
 I-bar clasp: 61% Aker’s clasp: 26% Others: 13%

5) Is Attachment Done?
 Yes: 91% (31 labs.) No: 9% (3 labs.)

6) Are Swaged Metal Plates Made?
 Yes: 21% (7 labs.) No: 79% (27 labs.)

7) Are Crowns and Bridges Made?
 Yes: 88% (30 labs.) No: 12% (4 labs.)

8) Metals Used for Cast Plates
 (1) Co-Cr alloy only: 37%
 (2) Ni-Cr alloy only: 9%
 (3) Co-Cr and Ni-Cr alloys: 3%
 (4) Au alloy, Co-Cr and Ni-Cr alloys: 51%
9) Average Number of Days Required for Construction
 (1) Full plate: 4.0 days
 (2) Partial plate: 4.3 days

10) Prices (Average for 34 labs.)

<table>
<thead>
<tr>
<th></th>
<th>Co-Cr alloy</th>
<th>Au alloy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full plate</td>
<td>¥20,700</td>
<td>¥34,000</td>
</tr>
<tr>
<td>Partial plate</td>
<td>27,400</td>
<td>42,300</td>
</tr>
</tbody>
</table>

11) Duplicate Impression
 (1) Flask material
 Metal: 80% Plastic: 11% Others: 9%

 (2) To what degree is hydro-colloid impression-material used?
 (i) Number of plates
 Up to 30 plates: 75%
 31 to 60 plates: 5%
 60 plates or more: 20%
 (ii) Number of days
 10 days or less: 46%
 11 to 20 days: 21%
 21 to 30 days: 29%
 More than 30 days: 4%

 (3) Bases for judging the limit of the use of hydro-colloid impression-material
 Elasticity change: 54%
 Color-tone change: 14%
 From experience: 11%
 Others: 21%

 (4) Fluid temperature of hydro-colloid impression-material
 39–40°C: 15%
 51–55°C: 32%
 41–45°C: 15%
 56–58°C: 9%
 46–50°C: 29%

 (5) Cooling methods for hydro-colloid impression-material
 (i) Natural cooling and water cooling: 71%
 (ii) Natural cooling only: 12%
 (iii) Water cooling only: 17%

12) Refractory Casts
 (1) After pouring the refractory material into the hydro-colloid material, how many minutes are allowed before it is taken out?
 40 minutes or less: 48%
 41–80 minutes: 48%
 81 minutes or more: 4%

 (2) Type of coating material for refractory cast
 Wax bath: 53%
 Spray: 11%
 Others: 36%

13) Waxing
 (1) Use of stipple wax
 For maxilla only: 76%
 For maxilla and mandible: 21%
 Not used: 3%

 (2) Fixing of finish-line position
 Under doctor’s instruction: 14%
 Fixed by laboratory: 86%
(3) Resin plate retention form
- Mesh form: 23%
- Loop form: 15%
- Letter V form: 3%
- Others: 59%

14) Investing
(1) Number of sprues

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Max</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxilla</td>
<td>2.4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Mandible</td>
<td>2.0</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

(2) Casting ring
- Ring used: 15%
- Ringless: 85%

- Plastic: 67%
- Metal: 27%
- Rubber: 3%
- Others: 3%

(3) Investment material mixing
- Vacuum mixing: 73%
- Manual mixing: 27%

(4) Burn-out period
- After investing, within 1 hour: 9%
 - about 1 hour: 18%
 - more than 1 hour: 73%

15) Casting Machines
(1) Metal melting method
- High-frequency induction-heating furnace: 79%
- Arc furnace: 15%
- Electric furnace: 3%
- Others: 3%

(2) Casting methods
- Centrifugal method: 82%
- Vacuum compression method: 8%
- Compression casting method: 8%
- Others: 2%

(3) Casting machines
- Horizontal high-frequency centrifugal machine: 79%
- Arc-compression casting machine: 16%
- Oxygen-acetylene melting centrifugal-casting machine: 5%

16) Causes of Cast Plate Reconstruction
(1) Responsibility of doctors: 79%
- Poor casts: 78%
- Poor design: 19%
- Others: 3%

(2) Responsibility of laboratories: 21%
- Faulty casting: 68%
- Poor design: 21%
- Others: 11%

17) Fracture Points
(1) Clasp: 76%
(2) Border between minor connector and plate: 16%
(3) Bar of plate: 6%
(4) Others: 2%
IV Summary

The system used for cast-plate construction at the Nihon University Dental Hospital was developed by Shofu, Inc. (Japan). The duplicating hydro-colloid material, the hydro-colloid duplicating dispenser, the refractory cast material, the Co-Cr alloy and the casting machines are all supplied by Shofu, Inc. While 100 to 150 cast plates are made a year, swaged metal plates are not made at all.

Cast plates used at the Hostipal, therefore, are limited in the method of construction, the number of plates and the system of application. Because of this, an assessment of the existing state of metal plate construction in the country was sought by means of a survey of dental laboratories since these make almost all the metal plates for patients attending private dental clinics.

Answers from 34 laboratories were analyzed and tabulated as below.

1. The percentage of laboratories making less than 999 metal plates a year was the highest at 47.8%, and the highest number of plates made in a year at any one laboratory was 12,600.
2. The percentage of laboratories making less than 500 full metal plates a year was 66.7% of the total, the highest.
3. The percentage of laboratories making less than 1,000 partial metal plates a year was 60.9% of the total, the highest.
4. The ratio of the number of partial metal plates to the total number of metal plates constructed a year at any one laboratory ranged from 70 to 79% at 7 laboratories or 27% of the total, the highest.
5. It was shown that a greater number of laboratories used implements and materials from various makers in constructing their metal plates rather than limiting their suppliers to a single maker.

References