An unusual staining of the tooth roots: a case report with histological and micro-analytical studies

Yohko Fukuta, Yasunori Takeda, Yoshiyasu Fukuta, Morio Totsuka, Yasuo Yoshida, Shyuichiro Hayashi, Jiro Niitsu*, and Hirotugu Yamamoto

Departments of Oral Diagnosis, Oral Pathology and Oral and Maxillofacial Surgery, School of Dentistry, and Electron Microscope Laboratory, Iwate Medical University, Iwate 020-8505

*Dental Clinic of Morioka City Hospital, Iwate 020-0866

Department of Pathology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587

(Received 22 March and accepted 15 May 2001)

Abstract: The discoloration of tooth roots is rare. We report here a 22-year-old Japanese woman with blackish-brown staining of the roots of the upper and lower third molars. Staining was found in the dentin and cementum. Electron probe X-ray microanalysis showed no significant difference in the composing elements between the stained tooth root and control tooth. Fluorescent bands coincided with staining in the dentin of the root and cementum along the incremental lines under confocal laser-scanning microscope. (J. Oral Sci. 43, 213-215, 2001)

Key words: staining; third molar; tooth root; dentin; cementum.

Introduction

There are various causes for the discoloration of teeth (1) such as surface deposits, changes in the structure or thickness of the dental hard tissues, diffusion of pigments into the dental hard tissues after formation, and the incorporation of pigments into the dental hard tissues during formation. When dental hard tissue is stained during the formation stage of the teeth, endogenous elements such as bile pigments and porphyrins, and exogenous ones such as tetracycline and heavy metals, are involved in the staining. Discoloration of only the roots in the third molar is extremely rare.

We report a case of stained third molar roots, in which histological and analytical studies were performed using a stereomicroscope, an electron probe X-ray microanalyzer, and a confocal laser-scanning microscope.

Case Report

The patient was a 22-year-old Japanese woman with habitual cheek biting using the third molars. The patient had a history of slight neonatal jaundice, an allergic rash from 10 to 21 years of age, and acne for several years from the age of 12 years. Oral examination revealed that the left upper third molar was erupted and the lower bilateral third molars were partially erupted. These three molars were extracted.

Observation of the Teeth

Macroscopic findings

Extracted teeth showed marked blackish-brown-stained roots, but the crowns were normal in color (Fig. 1A). On the horizontally cut surfaces of the roots, the whole cementum and some areas of the dentin were dyed blackish brown (Fig. 1B).

Microscopic findings

Half of the specimens were fixed in 10% neutral formalin, decalcified, and embedded in paraffin. The blackish-brown staining disappeared in this decalcified section.

The remaining half of the specimens were fixed in 10% neutral formalin and embedded in resin. On the horizontally cut surface, the cementum was dyed a deep
blackish brown with a lamellar structure, and the dentin around the pulp chamber was brown (Fig. 2).

Microfluorescent findings

In the undecalcified ground section, examination using a microscope (Nikon E 1000: Nikon Ltd., Tokyo, Japan) with UV exciter a filter revealed fluorescence in the cervical portion of the dentin and around the pulp chamber in the root, and the whole cementum (Fig. 3A). Furthermore, using a confocal laser-scanning microscope (Olympus LSM-GB200: Olympus Ltd., Tokyo, Japan) under krypton-argon laser (488 nm, 568 nm), strong fluorescence was noted along the incremental lines in the cervical portion of the dentin in the root and the whole cementum (Fig. 3B).

Electron probe X-ray microanalysis

The cut surfaces of the undecalcified sections were analyzed using an electron probe X-ray microanalyzer (JXA-8900L: JEOL Ltd., Tokyo, Japan). An upper third molar from a healthy 33-year-old woman was used as a control. There were no significant differences between the stained tooth roots and the control tooth in terms of the qualitative and quantitative distribution of the composing elements, such as Ca, P, Na, Mg, Zn, Fe, Al and S.
Discussion

Discoloration, which is seen only in the tooth roots, is rare. However, in the present case, blackish-brown staining of the roots of the third molars was noted. In the third molar, crown formation is completed after age 12, and root formation is completed by 19 to 21 years of age (2). If something causes a discoloration effect during the root formation stage of the third molar, staining may only show in the root.

It is well known that various causes exist for staining of the tooth during formation of the tooth, such as hemolytic anemia (3), hyperbilirubinemia (4,5), congenital porphyria (6), and chronic renal failure (7). However, the patient here had no medical history of such diseases and no heavy metal was detected by an electron probe X-ray microanalyzer.

There have been a few reports of staining of the root of the third molars due to the use of tetracycline or minocycline for treating acne (8-10). Tetracycline is deposited in tooth as well as in bone, and minocycline, which is a semisynthetic derivative of tetracycline, is deposited in tooth, bone, skin, sclera, nail, and fatty tissues (9-13). Tetracycline can be identified by fluorescence with ultraviolet light with an absorption peak at 360 nanometers (8,9), and fluorescent bands show under krypton-argon laser (488 nm) using a confocal laser-scanning microscope (14). In the present case, the fluorescence was seen in the whole cementum, the cervical portion of the dentin and around the pulp chamber of the root. And, the patient had taken acne medicine for several years from age 12 years.

We suspected that the stain was due to tetracycline administration during the root formation stage of these third molars. Tetracycline has a tendency to form a chelating compound with the formation of a tetracycline-calcium orthophosphate complex (12), and the disappearance of the staining in the decalcified section further supported our hypothesis.

Acknowledgments

This study was supported by Grants-in-Aid for High Performance Biomedical Materials Research from Ministry of Education, Culture, Sports, Science and Technology, Japan.

References