Adsorption of Krypton on Adsorbents at Cryogenic Temperatures*

Kenzo MUNAKATA**, Takashi SHINOZAKI** and Hirofumi OKABE**
**Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
E-mail: kenzo@nucl.kyushu-u.ac.jp

Abstract
Most of 85Kr in atmosphere is released from anthropogenic sources such as tests of nuclear weapons and nuclear reactors. As a chemically inert gas with a long half-life, 85Kr will continue to accumulate in the environment. Thus, it is necessary to monitor the atmospheric 85Kr concentrations. In this study, the authors conducted a screening test of several adsorbents to search for suitable adsorbents for adsorption of Kr at under nitrogen atmosphere, which is used for the monitoring system of 85Kr. A screening test was carried out by focusing on adsorption characteristics at a cryogenic temperature. With regard to adsorbents selected in the screening test, more detailed adsorption characteristics were examined. As a result, it was found that carbon based adsorbents have better performance for adsorption of Kr and that the Ambersorb 572 adsorbent has the largest adsorption capacity. It was also found that the adsorption capacity of non-carbon based adsorbents is much lower than that of carbon-based adsorbents.

Key words: Monitoring, Nuclear Reprocessing, Krypton, Adsorption, Adsorbent

1. Introduction
Krypton-85 is a radioactive noble gas that decays via emission of beta (0.4% of beta decay emit gamma ray.). At present, the major sources of 85Kr are the nuclear fuel reprocessing plants in Europe(1). As a chemically inert gas with a long half-life (10.7 years), 85Kr will continue to accumulate in the environment. In the monitoring system used at the Meteorological Research Institute in Tsukuba, Japan, atmospheric 85Kr is first collected from air at several sampling stations located in Japan using an adsorption bed immersed in liquid nitrogen, which is followed by chromatographic separation and activity counting with a GM tube. There is a problem related to the monitoring system; the adsorption characteristics of Kr in air on an activated charcoal adsorbent used at cryogenic temperature are still not well understood. In previous works, the authors studied the adsorption of noble gases on several adsorbents(2,3). A screening test of adsorbents for Kr was conducted as well (4). However, in these studies, helium was used as the carrier gas since the major purpose was to obtain basic adsorption characteristics of noble gases on adsorbents. Additionally, the data were taken at relatively higher temperatures because cryogenic operation was not considered. The gas introduced to the adsorption bed used for the monitoring system or recovery of radioactive noble gases from nuclear off-gases is air in the actual process, and thus the effect of coexistent nitrogen on the adsorption of noble gases needs be investigated. Thus, in this study, the authors conducted a screening test of adsorbents for adsorption of Kr at under nitrogen atmosphere. The screening test was carried out by focusing on adsorption characteristics at liquid argon temperature. Search for more effective adsorbents is
important for secure recovery of 85Kr from the atmosphere, which can guarantee the accuracy of the monitoring. Then, more detailed adsorption characteristics were investigated for the adsorbents selected.

Nomenclature

H_0: temperature independent constant for Henry’s law, mol/(g·Pa)

H_{st}: isosteric heat of adsorption in infinitesimal dilution, J/mol

K_0: temperature independent constant, mol/(g·Pa)

p: partial pressure of Kr, Pa

q: concentration in the solid phase, mol/g

q_s: saturation adsorption amount, mol/g

R: gas constant, J/(mol·K)

T: absolute temperature, K

2. Experimental

The experiments were conducted by the breakthrough method. Figure 1 shows a flow diagram of the experimental apparatus used in this study. In the screening test, a tubular container made of quartz glass, which was charged with adsorbents, was placed in a constant temperature bath filled with liquid argon (87 K). Experiments were also conducted using liquid nitrogen (77 K) as a refrigerant, but condensation of nitrogen carrier gas took place. For this reason, liquid argon was used as the cooling medium. In the case of more detailed study on adsorption characteristics, a cryostat system was used to control the temperature of adsorbents at various cryogenic temperatures. In this case, adsorbents were charged in a container made of aluminum, which was attached to the cryopanel in the cryostat system. In the experiments, nitrogen containing a certain amount of krypton was introduced to the container of the adsorbents. The gas composition of the inlet and outlet streams of the adsorption bed was analyzed with a quadrupole mass spectrometer (Mini-Lab by MKS Inc.). The adsorbents used were preheated under nitrogen.
atmosphere prior to use.

3. Result and Discussion

3.1 Screening test of adsorbent

Figure 2 shows the amounts of Kr adsorbed on various adsorbents at liquid argon temperature as the function of partial pressure of Kr. The adsorbents used were activated charcoal (produced by Kishida Reagents Chemicals Ltd.), activated charcoal (produced by Merck Ltd.), Ambersorb 572 and Ambersorb 563 (produced by Sigma-Aldrich Co.), artificial mordenite (produced by Tosoh Co.), H-mordenite (prepared from natural mordenite by Kanto-Mineral Ltd.), Ag-mordenite (prepared from natural mordenite by Kanto-Mineral Ltd.), and Molecular Sieve 5A (produced by Sigma-Aldrich Co.). Activated charcoals, Ambersorb 572 and Ambersorb 563 are all carbon-based adsorbents; the isotherms of these carbon based adsorbents are presented as closed symbols in Fig. 2. The Merck-produced activated charcoal adsorbent is actually used in the monitoring system of atmospheric 85Kr operated by the Meteorological Research Institute in Japan. Available data on the physical property of the adsorbents used are summarized in Table 1, which indicates that the carbon based adsorbents have larger BET surface areas. As shown in Fig. 2, carbon based adsorbents have larger adsorption capacities for Kr, and the adsorption isotherms of these adsorbents obey the Henry law when the partial pressures of Kr are less than 100 Pa. The adsorption amounts of Kr on non-carbon based adsorbents (presented as open symbols) are considerably smaller (approximately 1 to 2 order of magnitude) than those on the carbon-based adsorbents. With regard to mordenite-based adsorbents such as the H-mordenite and Ag-mordenite adsorbents, it has been reported that the adsorption amounts of Kr on these adsorbents are large if the carrier gas is helium4,5. However, the results shown in Fig. 2 indicate that the use of such adsorbents is not effective for the adsorption of Kr at liquid argon temperature under the nitrogen atmosphere. Among the carbon based adsorbents tested, the Ambersorb 572 adsorbent has the largest adsorption capacity for Kr at liquid argon temperature. The major differences in the properties of synthetic carbonaceous adsorbents such as Ambersorb 572 and Ambersorb 563 are the hydrophobicity and surface area. According to data given by Sigma-Aldrich Inc. it is indicated that the Ambersorb 572 adsorbent is most hydrophlic among the Ambersorb series of adsorbents and has a larger surface area (1100 m2/g). On the contrary Ambersorb 563 adsorbent is rather hydrophobic and has a moderate surface area (550 m2/g). The major reason for the larger adsorption capacity of Kr on the Ambersorb 572 adsorbent appears to be its high surface area. However, for these carbon based adsorbents, difference in the hydrophobicity does not seem to be a major factor for the adsorption of

![Fig. 2 Adsorption isotherm of Kr on various adsorbent at liquid argon temperature](image-url)
krypton under nitrogen atmosphere.

Krypton is a non–polar molecule since it is a monatomic molecule. On the other hand, nitrogen is a polar molecule, which has probably more affinity to polar surfaces. The non-carbon based adsorbents used in this work are porous ceramic type of adsorbent (of which crystal is based on ionic bonds), and thus their surface polarity is by far greater than those of the carbon based adsorbents, which could lead to more affinity to nitrogen and less affinity to krypton. Hence, inhibition effect on the adsorption of Kr by coexistent nitrogen is thought to take place more greatly on the surface of the non-carbon based adsorbents.

3.2 Adsorption isotherms of Kr on carbon-based adsorbents

The result of the screening test shown above suggests that carbon-based adsorbents have larger adsorption capacity than non-carbon-based adsorbents. Therefore, adsorption characteristics of the carbon-based adsorbents such as activated charcoal (Kishida Reagents Chemicals), activated charcoal (Merck) and Ambersorb 572 (Sigma–Aldrich) were further studied by varying the adsorption temperature. In addition to these adsorbents, the Ryujyo Shirasagi G2X4/6-3 adsorbent produced by Takeda Chemical Industry Ltd. was also tested; the G2X4/6-3 adsorbent was not examined in the screening test but it was added in the study since it is used for the holdup of noble gases in nuclear power plants.

Figures 3, 4, 5 and 6 show the experimental adsorption isotherms at various temperatures on the adsorbents mentioned above. Adsorption amounts obtained with liquid argon as a coolant are slightly smaller than those at 90 K which was controlled with the cryostat system. This could be caused by problems related to temperature control with liquid argon. At the temperature of 90 K, the adsorption amount of Kr on the Ambersorb 572 adsorbent was largest among the adsorbents tested, which was about 1.3 times as large as that of...
activated charcoal adsorbents (Merck and Kishida) and was about 2 times as large as that of the G2X4/6-3 adsorbent. However, the adsorption amount of Kr on the Ambersorb 572 adsorbent more remarkably decreased with increasing temperature compared with the other adsorbents. The effect of temperature change on the adsorption amount of Kr appears to be comparable in terms of the other activated charcoal adsorbents. For the Ambersorb 572 adsorbent, temperature control could be important when it is used in the cryogenic adsorption process, since the effect of temperature change on the adsorption amount is larger for this adsorbent.

Figures 3-6 indicate that Henry’s law can be applied to the correlation of adsorption isotherms in the partial pressure range less than 100 Pa. With regard to the Ambersorb 572 adsorbent and the activated charcoal adsorbent (Merck), experiments were conducted at the partial pressure as high as 400 Pa as well. As seen in Figs. 3 and 4, asymptotic behavior for adsorption amounts of Kr takes place in the higher partial pressure range. Therefore, the Langmuir equation was applied to the correlation of the adsorption isotherms for the Ambersorb 572 adsorbent and activated charcoal (Merck). In principle, the Langmuir equation is used to correlate the isotherms of single component adsorption. Thus, it should be noted that the effect of coexistent nitrogen is included in this correlation. The Langmuir equation is expressed as follows:

\[
q = \frac{K q_p}{1 - K p}
\] (1)

\[
K = K_0 \left(\frac{-H_{st}}{R T} \right)
\] (2)

When the partial pressure is small, equation (1) conforms to Henry’s law that is expressed by

\[
q = H p
\] (3)

\[
H = H_0 \left(\frac{-H_{st}}{R T} \right)
\] (4)
For the activated charcoal adsorbents (Kishida) and the G2X4/6-3 adsorbent, Henry’s law was used to correlate their adsorption isotherms, since adsorption isotherm data were not taken in the higher partial pressure range for these adsorbents. The values of q_s, K_0, and H_{st} (Langmuir equation) or of H_0 and H_{st} (Henry’s law) were optimized to correlate the adsorption isotherms by the least squares analysis. The following equations were obtained as the results of correlation.

[for Ambersorb572]

$$q = \frac{6.05 \times 10^{-6} p \exp(7300 / RT)}{1 - 3.40 \times 10^{-7} p \exp(7300 / RT)}$$ \hspace{1cm} (5)

[for activated charcoal by Merck]

$$q = \frac{1.97 \times 10^{-8} p \exp(5990 / RT)}{1 - 1.23 \times 10^{-6} p \exp(5990 / RT)}$$ \hspace{1cm} (6)

[for activated charcoal by Kishida]

$$q = 2.54 \times 10^{-8} p \exp(5850 / RT)$$ \hspace{1cm} (7)

[for Sharasagi G2x4/6-3]

$$q = 1.17 \times 10^{-8} p \exp(6310 / RT)$$ \hspace{1cm} (8)

Solids lines in Figs. 3-6 show the results of calculation with the above equations, which indicate that the experimental adsorption isotherms are properly with the equations shown above. As expected, the isosteric heat of adsorption is highest for the Ambersorb 572 adsorbent. The partial pressure of Kr, which is the mixture of isotopes such as 84Kr (56.90 %), 86Kr (17.37 %), 82Kr (11.56 %), 83Kr (11.55 %) and so forth, in the atmosphere is about 0.114 Pa, and small amounts of 85Kr are additionally contained in the mixture. In the practical monitoring of atmospheric 85Kr, which is carried out in the Meteorological Research Institute, it is necessary to recover Kr of the partial pressure of 0.114 Pa from the air. In the present study, the adsorption amount of Kr at the 0.114 Pa could not be experimentally obtained since the detection limit of the mass spectrometer for the measurement of Kr concentration is higher than the partial pressure, 0.114 Pa. However, as shown above, the adsorption isotherms of the adsorbents obey the Henry’s law at lower partial pressures, and thus the adsorption amounts of Kr at about 0.114 Pa can be estimated from the equations (5) to (8). Table 2 summaries the adsorption amount of Kr at the partial pressure of 0.1 Pa and at the temperatures of 80, 90 and 100 K for the carbon-based adsorbents tested in this study.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>80 K (mol/g)</th>
<th>90 K (mol/g)</th>
<th>100 K (mol/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambersorb572</td>
<td>5.3×10^{-5}</td>
<td>1.6×10^{-5}</td>
<td>5.8×10^{-6}</td>
</tr>
<tr>
<td>A.C. (Merck)</td>
<td>2.4×10^{-5}</td>
<td>8.8×10^{-6}</td>
<td>3.9×10^{-6}</td>
</tr>
<tr>
<td>A.C. (Kishida)</td>
<td>2.5×10^{-5}</td>
<td>9.4×10^{-6}</td>
<td>4.3×10^{-6}</td>
</tr>
<tr>
<td>G2x4/6-3</td>
<td>2.3×10^{-5}</td>
<td>8.0×10^{-6}</td>
<td>3.4×10^{-6}</td>
</tr>
</tbody>
</table>

In the case of the Meteorological Research Institute, it is required to collect 4.8×10^{-4} mol of Kr for the quantification of the concentration of 85Kr. From the view point of equilibrium adsorption capacity for Kr, the amount of adsorbent required can be estimated. Table 3 shows the minimum amount of adsorbent necessary for collecting 4.8×10^{-4} mol of Kr at various temperatures. From this table, it can be said that the amount of adsorbent required...
for the collection of atmospheric Kr is relatively small. However, the amounts of adsorbent shown in Table 3 are only based on the adsorption capacity, and thus the adsorption kinetics should be studied as well.

Table 3 Amount of adsorbent required to collect 4.8×10^{-4} mol of Kr at 0.114 Pa

<table>
<thead>
<tr>
<th></th>
<th>80 K (g)</th>
<th>90 K (g)</th>
<th>100 K (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambersorb 572</td>
<td>9.1</td>
<td>31</td>
<td>82</td>
</tr>
<tr>
<td>A.C. (Merck)</td>
<td>20</td>
<td>55</td>
<td>120</td>
</tr>
<tr>
<td>A.C. (Kishida)</td>
<td>19</td>
<td>51</td>
<td>110</td>
</tr>
<tr>
<td>G2x4/6-3</td>
<td>21</td>
<td>60</td>
<td>140</td>
</tr>
</tbody>
</table>

4. Conclusion

A screening test of adsorbents was carried out in order to find out suitable adsorbents for the recovery of radioactive krypton from nitrogen atmosphere. The adsorption performances of various adsorbents for Kr were investigated at liquid argon temperature. It was found that carbon based adsorbents have better performance for adsorption of Kr and that the Ambersorb 572 adsorbent has the largest adsorption capacity. It was also found that the adsorption capacity of non-carbon based adsorbents is much lower than that of carbon-based adsorbents.

More detailed adsorption characteristics were investigated for carbon-based adsorbents using the cryostat system. In the temperature range of 90-100 K, the Ambersorb 572 adsorbent has the largest adsorption capacity for the adsorption of Kr under nitrogen atmosphere. The effect of temperature on the adsorption capacity was found to be largest for the Ambersorb 572 adsorbent.

References