Synthesis and Fungicidal Activities of 2-Alkoxyiminoacetamides with a 4,5-Dihydroisoxazole Ring

Hiroyuki KAI, Tuneo ICHIBA, Kuniyoshi NISHIDA,
Michio MASUKO and Akira TAKASE
Aburahi Laboratories, Shionogi & Co., Ltd., 1405 Gotanda,
Koka-cho, Koka-gun, Shiga 520-3423, Japan
(Received November 14, 1997; Accepted February 20, 1998)

A series of 2-alkoxyiminoacetamides with a 4,5-dihydroisoxazole ring and their related compounds were synthesized and their fungicidal activities against cucumber downy mildew were assessed. Our studies of the structure-activity relationships revealed that fungicidal activity was the strongest when the substituents on the amide nitrogen of 2-alkoxyimino-2-cyanoacetamides were 4,5-dihydroisoxazol-3-ylmethyl groups. Among the compounds examined, 2-cyano-2-methoxyimino-N-(5-methyl-4,5-dihydroisoxazol-3-ylmethyl) acetamide (12) showed a potent fungicidal activity against cucumber downy mildew.

INTRODUCTION

In our previous paper, we reported the structure-activity relationships of fungicidal 2-alkoxyimino-2-cyanoacetamide derivatives. Among these, 2-cyano-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide (A) showed a potent activity against cucumber downy mildew.

In the course of our study, the cyano and 4,5-dihydroisoxazole ring moieties of compound A were modified structurally for further improvement of fungicidal activity (Fig. 1). Here, we report the synthesis and structure-activity relationships of 2-alkoxyiminoacetamides with a 4,5-dihydroisoxazole ring and their related compounds.

MATERIALS AND METHODS

1. Instrumental Analysis

Melting points were measured with a Büchi 535 melting point apparatus and are uncorrected. Refractive index were measured with an Atago Abbe-refractometer. 1H NMR spectra were measured on a JEOL JNM-GSX 270 spectrometer at 270 MHz using tetramethylsilane (TMS) as an internal standard.

2. Synthesis of Compounds

The methods for synthesis of 2-substituted 2-alkoxyimino-N-(4,5-dihydroisoxazol-3-yl)acetamides (I) and 2-alkoxyimino-2-cyano-N-(4,5-dihydroisoxazol-3-ylmethyl)acetamides (II) are shown in Figs. 2 and 3, respectively. The typical synthetic procedures are shown below.

2.1 2-Methoxycarbonyl-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide: 1 (Ia: R1, R2=Me in Fig. 2)

A solution of methyl malonyl chloride (4.76 ml, 44.4 mmol) in acetonitrile (2 ml) was added dropwise to a mixture of 3-amino-5,5-dimethyl-4,5-dihydroisoxazole (III: R1, R2=Me; 4.22 g, 37 mmol), pyridine (3.51 g, 44.4 mmol) and acetonitrile (37 ml) at 0-5°C over 30 min, and the mixture was stirred at room temperature for 1 hr. The reaction mixture was poured into ice-water (100 ml), acidified with 5% hydrochloric acid, and extracted with dichloromethane (100 ml×4). The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give 8.41 g of crude 2-methoxycarbonyl-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide (IV: R1, R2=Me).

A solution of methyl malononitrile (4.76 ml, 44.4 mmol) in acetonitrile (2 ml) was added dropwise to a mixture of 3-amino-5,5-dimethyl-4,5-dihydroisoxazole (III: R1, R2=Me; 4.22 g, 37 mmol), pyridine (3.51 g, 44.4 mmol) and acetonitrile (37 ml) at 0-5°C over 30 min, and the mixture was stirred at room temperature for 1 hr. The reaction mixture was poured into ice-water (100 ml), acidified with 5% hydrochloric acid, and extracted with dichloromethane (100 ml×4). The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give 8.41 g of crude 2-methoxycarbonyl-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide (IV: R1, R2=Me).

A solution of the crude 2-methoxycarbonyl-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide (IV: R1, R2=Me; 8.41 g) in methanol (37 ml) was added to a solution of sodium (1.02 g, 44.4 mmol) in methanol (37 ml) in an ice bath, and the mixture was stirred at 0-5°C for 10 min. Butyl nitrite (6.30 g, 55.5 mmol) was added dropwise to the mixture at 0-5°C over 2 min, and the mixture was stirred at room temperature for 1.5 hr. The reaction mixture was poured into ice-water (100 ml), acidified with 5% hydrochloric acid, and extracted with dichloromethane (100 ml×4). The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give crude product. The product was recrystallized from ethyl acetate to give...
6.82 g (75.8%) of 2-hydroxyimino-2-methoxycarbonyl-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)-acetamide as colorless crystals.

Dimethyl sulfate (1.11 g, 8.8 mmol) was added to a mixture of 2-hydroxyimino-2-methoxycarbonyl-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)-acetamide (1.95 g, 8 mmol), potassium carbonate (1.33 g, 9.6 mmol) and N,N-dimethylformamide (8 ml) in an ice bath, and the mixture was stirred at room temperature for 1.5 hr. The mixture was poured into water (100 ml) and extracted with ethyl acetate (100 ml x 2). The organic layer was dried over anhydrous magnesium sulfate, and concen-
trated under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 1.03 g (50.1%) of compound 1. The product was recrystallized from hexane and ethyl acetate to give colorless crystals, mp 149–151°C. Anal. Found: C, 46.68; H, 5.83; N, 16.16. Calcd. for C_{10}H_{15}N_{4}O_{4}: C, 46.69; H, 5.88; N, 16.33%. 2-H NMR (CDCl₃) δ ppm: 1.44 (6H, s), 3.33 (2H, s), 3.91 (3H, s), 4.09 (3H, s), 8.69 (1H, brs).

2.2 2-Carbamoyl-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide: 2 (Ib: R¹, R², R⁴ = Me in Fig. 2)

A mixture of compound 1 (0.26 g, 1 mmol), 28% aqueous ammonia solution (1.2 ml) and methanol (2 ml) was stirred at room temperature for 20 hr. The reaction mixture was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate) to give 0.19 g (78.4%) of compound 2. The product was recrystallized from hexane and ethyl acetate to give colorless crystals, mp 200–201°C. Anal. Found: C, 44.64; H, 5.78; N, 22.87. Calcd. for C_{9}H_{14}N_{4}O_{4}: C, 44.62; H, 5.83; N, 23.13%. 1H NMR (CDCl₃) δ ppm: 1.44 (6H, s), 3.33 (2H, s), 3.91 (3H, s), 4.17 (3H, s), 5.83 (1H, brs), 6.41 (1H, brs), 9.15 (1H, brs).

2.3 2-Methylthio)methyl-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide: 6 (Ic: R¹, R², R⁴ = Me in Fig. 2)

A mixture of compound 2 (0.92 g, 3.8 mmol), Lawesson's reagent (0.93 g, 2.3 mmol) and toluene (8 ml) was stirred at room temperature for 20 hr. The reaction mixture was poured into water (100 ml) and extracted with ethyl acetate (100 ml). The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 0.19 g (62.2%) of compound 6. The product was recrystallized from hexane and ethyl acetate to give colorless crystals, mp 148–150°C (dec.). Anal. Found: C, 41.95; H, 5.76; N, 27.10. Calcd. for C_{9}H_{15}N_{5}O_{4}: C, 42.01; H, 5.89; N, 27.23%. 1H NMR (CDCl₃) δ ppm: 1.44 (6H, s), 3.37 (2H, s), 4.17 (3H, s), 5.83 (1H, brs), 6.41 (1H, brs), 9.15 (1H, brs).

2.4 2-Amino(hydroxyimino)methyl-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide: 7 (Id: R¹, R², R⁴ = Me in Fig. 2)

2-Cyano-2-methoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamide [V (R¹, R², R⁴ = Me; 0.34 g, 1.5 mmol) was added to a mixture of hydroxylamine hydrochloride (0.23 g, 3.3 mmol), sodium methoxide (0.16 g, 3 mmol) and methanol (4 ml) in an ice bath, and the mixture was stirred under reflux for 1 hr. The mixture was poured into water (100 ml) and extracted with dichloromethane (80 ml x 2). The organic layer was dried over anhydrous magnesium sulfate, concentrated under reduced pressure and the residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 0.24 g (62.2%) of compound 7. The product was recrystallized from hexane and ethyl acetate to give colorless crystals, mp 148–150°C (dec.). Anal. Found: C, 41.95; H, 5.76; N, 27.10. Calcd. for C_{9}H_{15}N_{5}O_{4}: C, 42.01; H, 5.89; N, 27.23%. 1H NMR (CDCl₃) δ ppm: 1.44 (6H, s), 3.35 (2H, s), 3.60 (1H, brs), 4.14 (3H, s), 5.16 (2H, brs), 9.22 (1H, brs).

2.5 3-Aminomethyl-5-tert-buty1-4,5-dihydroisoxazole (IX: R¹ = tert-Bu, R² = H in Fig. 3)

Sodium borohydride (29.51 g, 0.78 mol) was added to a solution of ethyl 5-tert-butyl-4,5-dihydro-3-isoxazolone-carboxylate [VI (R¹ = tert-Bu, R² = H; 25.90 g, 0.13 mol) in methanol (260 ml) at 0–5°C over 15 min, and the mixture was stirred under reflux for 1 hr. The reaction mixture was poured into water (1000 ml) and extracted with dichloromethane (1000 ml x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give 19.5 g of crude 5-tert-butyl-3-hydroxymethyl-4,5-dihydroisoxazole (VII: R¹ = tert-Bu, R² = H).

A mixture of crude VII (R¹ = tert-Bu, R² = H; 19.5 g, 0.124 mol), thionyl chloride (19.04 g, 0.16 mol) and benzene (200 ml) was stirred under reflux for 1 hr. The reaction mixture was poured into water (100 ml) and extracted with ether (700 ml). The organic layer was washed with brine (700 ml), dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate/hexane) to give 19.6 g (56.3%) of N-(5-tert-butyl-3-chloromethyl-4,5-dihydroisoxazole. The crude 5-tert-butyl-3-chloromethyl-4,5-dihydroisoxazole in N,N-dimethylformamide (200 ml) and potassium phthalimide (29.91 g, 0.16 mol) was stirred at room temperature for 19 hr. The reaction mixture was poured into water (1000 ml) and extracted with dichloromethane (1000 ml x 2). The organic layer was washed with brine (700 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 19.5 g of crude 5-tert-butyl-3-hydroxymethyl-4,5-dihydroisoxazole (VII: R¹ = tert-Bu, R² = H).

A mixture of crude VII (R¹ = tert-Bu, R² = H; 19.5 g, 0.124 mol), thionyl chloride (19.04 g, 0.16 mol) and benzene (200 ml) was stirred under reflux for 1 hr. The reaction mixture was poured into water (100 ml) and extracted with ether (700 ml). The organic layer was washed with brine (700 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 19.5 g of crude 5-tert-butyl-3-hydroxymethyl-4,5-dihydroisoxazole (VII: R¹ = tert-Bu, R² = H).

A mixture of crude VII (R¹ = tert-Bu, R² = H; 19.5 g, 0.124 mol), thionyl chloride (19.04 g, 0.16 mol) and benzene (200 ml) was stirred under reflux for 1 hr. The reaction mixture was poured into water (100 ml) and extracted with ether (700 ml). The organic layer was washed with brine (700 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 19.5 g of crude 5-tert-butyl-3-hydroxymethyl-4,5-dihydroisoxazole (VII: R¹ = tert-Bu, R² = H).
A mixture of VIII (R1 tert-Bu, R2=H; 10.31 g, 36 mmol), 80% hydrazine hydrate (2.74 g, 43.2 mmol) and methanol (72 ml) was stirred at 60°C for 15 hr. The reaction mixture was poured into 4% aqueous sodium hydroxide (200 ml) and extracted with dichloromethane (200 ml x 2). The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to give 4.53 g (80.5%) of IX (R1 tert-Bu, R2=H) as a brown oil. 1H NMR (CDCl3) δ ppm: 0.92 (9H, s), 1.55 (2H, brs), 2.75 (1H, dd, J=17.6 & 8.8 Hz), 2.88 (1H, dd, J=17.6 & 10.7 Hz), 3.57 (2H, s), 4.32 (1H, dd, J=10.8 & 8.8 Hz).

2.6 2-Cyano-2-methoxyimino-N-(5-tert-butyl-4,5-dihydroisoxazol-3-yl)methyl)acetamide: 14 (II: R1 tert-Bu, R2=Me, R4=Me in Fig. 3)

Dimethyl sulfate (6.94 g, 55 mmol) was added dropwise to a mixture of ethyl 2-cyano-2-hydroxyiminoacetate (7.11 g, 50 mmol), potassium carbonate (8.29 g, 60 mmol) and N, N-dimethylformamide (100 ml) at 0-5°C over 10 min, and the mixture was stirred at room temperature for 5 hr. The mixture was poured into water (500 ml) and extracted with ether (500 ml). The organic layer was washed with brine (500 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 4.53 g (58.0%) of crude ethyl 2-cyano-2-methoxyiminoacetate (X: R4=Me) as a brown oil. 1H NMR (CDCl3) δ ppm: 1.40 (3H, t, J=6.8 Hz), 4.33 (3H, s), 4.42 (2H, q, J=6.8 Hz).

A mixture of IX (R1 tert-Bu, R2=H; 0.31 g, 2 mmol), X (R4=Me; 0.34 g 2.2 mmol) and methanol (4 ml) was stirred at room temperature for 6 hr. The reaction mixture was poured into ice-water (80 ml), acidified with 5% hydrochloric acid, and extracted with ether (100 ml). The organic layer was washed with brine (500 ml), dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 0.33 g (62.0%) of compound 14 as a pale yellow oil. Anal. Found: C, 53.84; H, 6.85; N, 20.42. Calcd. for C12H18N4O3: C, 54.11; H, 6.83; N, 21.04%. 1H NMR (CDCl3) δ ppm: 0.91 (9H, s), 2.74 (1H, dd, J=17.6 & 9.6 Hz), 2.89 (1H, dd, J=17.6 & 10.7 Hz), 4.24-4.40 (3H, m), 4.26 (3H, s), 7.06 (1H, brs).

3. Biological Tests
3.1 Plant materials

Cucumber (Cucumis sativus L. cv. Tsukuba-shiroibo) seedlings were used for the assay disease controlling activity by foliar application. The seedlings were prepared as described previously. 1)

3.2 Assay methods for fungicidal activity against cucumber downy mildew

Preventive and curative activities of the test compounds on cucumber downy mildew were assessed by foliar application. The details of the fungicidal essay were described previously.1)

The fungicidal activity by preventive application was expressed as an index of 4, 3, 2, 1 and 0, each corresponding to approximately 70% control at less than 7.8, 31.3, 125, 500 ppm and less than 70% control at 500 ppm, respectively.

RESULTS AND DISCUSSION

1. Fungicidal Activities of 2-Substituted 2-Alkoxyimino-N-(4,5-dihydroisoxazol-3-yl)acetamides (I)

The effects of R3 on the fungicidal activity were examined with various kinds of derivatives in which R1, R2 and R4 of I were fixed as methyl (Table 1). Among these, amino(hydroxyimino)methyl derivative (7) was the most active, whereas methoxycarbonyl (1), carbamoyl (2-4) and imino(methoxy)methyl (5) derivatives were inactive. Mino(methylthio)methyl derivative (6) had a lower activity.

Table 1 shows the effects of substituents (R3) on the fungicidal activity of 2-Substituted 2-alkoxyimino-N-(5,5-dimethyl-4,5-dihydroisoxazol-3-yl)acetamides and their fungicidal activities against cucumber downy mildew.

Table 2 shows the effects of substituents (R3) on the fungicidal activity of 2-Alkoxyimino-2-amino(hydroxyimino)methyl-N-(4,5-dihydroisoxazol-3-yl)acetamides and their fungicidal activities against cucumber downy mildew.

<table>
<thead>
<tr>
<th>Compound No.</th>
<th>R3</th>
<th>mp(°C)</th>
<th>Fungicidal activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COOMe</td>
<td>140.5-142</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>CONH2</td>
<td>200-201</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>CONHM2</td>
<td>154.5-155.5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>CON(Me2)</td>
<td>135-136</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>C(NH)OMe</td>
<td>105-106</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>C(NH)SM2</td>
<td>107-108</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>C(NOH)NH2</td>
<td>148-150(d)</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>CN</td>
<td>167.5-168.5</td>
<td>4</td>
</tr>
</tbody>
</table>

a) 5-Methyl-4,5-dihydroisoxazole derivative. b) Data were taken from our previous paper. 1)
4,5-dihydroisoxazole ring and oxime ether moiety (R4) of 2-alkoxyimino-2-amino(hydroxyimino)methyl-N-(4,5-
dihydroisoxazol-3-yl)acetamides. When the methyl
group at position-5(R2) on the 4,5-dihydroisoxazole ring
of compound 7 was removed or changed to an ethyl
group, the fungicidal activity was not affected (8 and 9).
Regarding to the oxime ether moiety, methyl and ethyl
derivatives (7–10) were active, whereas benzyl derivative
(11) was inactive. A series of amino(hydroxyimino)-methyl
derivatives seemed to be inferior to the original
lead compound A.

From these results, it might be concluded that the
cyano group of the bioactive compound could possibly
be replaced with amino(hydroxyimino)methyl group.

2. **Fungicidal Activities of 2-Alkoxymino-2-cyano-N-(4,5-
dihydroisoxazol-3-ylmethyl)acetamides (II)**

The fungicidal activities of 4,5-dihydroisooxazol-3-
yl methyl derivatives (II, n=1) and 4,5-dihydroisoaxozol-
3-yl derivatives (V, n=0) are compared in Tables 3 and
4.

Table 3 shows the effects of substituents at position-5
on the 4,5-dihydroisooxazole ring. Among the 4,5-
dihydroisoxazol-3-ylmethyl derivatives (12-15), methyl
(12) and dimethyl (13) derivatives showed higher activ-
ities than those with larger substituents (tert-butyl, 14;
phenyl, 15). Regarding to the bridge part between 4,
5-dihydroisoxazole ring and acetamide moiety, 4,5-
dihydroisoxazol-3-ylmethyl derivatives (n=1) exhibited
stronger activity than 4,5-dihydroisoxazol-3-yl deriv-
atives (n=0) except when the substituents at position-5 on
the 4,5-dihydroisoxazole ring were dimethyl groups.

Table 4 shows the effects of substituents (R4) on the
oxime ether. Among the 5-methyl-4,5-dihydroisoxazol-
3-ylmethyl derivatives (12, 19-21), methyl derivative (12)
was the most active, whereas substituents larger than the
methyl group (ethyl, 19; isopropyl, 20; benzyl, 21),
reduced the activity. The 4,5-dihydroisoxazol-3-
yl methyl derivatives (n=1: 12, 19 and 21) were more
active than the corresponding 4,5-dihydroisoxazol-3-yl
derivatives (n=0: 16, 22 and 24), although the isopropyl
derivatives (20 and 23) showed the same activity.

In conclusion, the 4,5-dihydroisoxazol-3-ylmethyl
derivatives (II), as induced by inserting -CH2- between
the 4,5-dihydroisoxazole ring and amide moiety of the
4,5-dihydroisoxazol-3-yl derivatives (V), had an
increased fungicidal activity. The effect was presumed to
be due to an increased structural flexibility of the
4,5-dihydroisoxazole ring, and due to a reduced steric
factor influence of substituents at position-5 on the
4,5-dihydroisoxazole ring and substituents (R4) on the
oxime moiety of the derivatives II. The 4,5-
dihydroisoxazole ring and the oxime moiety fit to the
better position of a target site. To know yet more
detailed mode of action, it will be necessary to search for

3. **Fungicidal Activities of 2-Cyano-2-methoxyimino-
N(substituted methyl)acetamides**

Since 2-methoxyimino-2-cyanoacetamides with 4,5-
dihydroisoxazol-3-ylmethyl group on the amide nitrogen
were found to be favorable for the fungicidal activity, 4,
5-dihydroisoxazol-3-yl moieties of compound 12 were
modified structurally. Compounds 25–31 were prepar-
ed by the reaction of substituted methylamines with ethyl
2-cyano-2-methoxyiminoacetate.

Table 5 shows the effects of Z on the fungicidal activ-
ities examined with various kinds of derivatives.
Among these, the 4,5-dihydroisoxazole derivative (12)
was most active, followed by isoxazole (25) and pyridine
(27) derivatives. Cyanoy derivative (28) exhibited a
lower activity, while thiophene derivative (26), ethynyl
(29), vinyl (30) and chloromethyl (31) derivatives exhibited an extremely weak activity. These results revealed that the 4, 5-dihydroisoxazol-3-ylmethyl group on the amide nitrogen atom of 2-alkoxyimino-2-cyanoacetamides was presumed to be of serious role by the occurrence of a potent fungicidal activity. The 4, 5-dihydroisoxazole ring can form a hydrogen bond and have a suitable bulkiness.

4. Fungicidal Activities of Selected Compounds

Based on the above results, compounds 12 and 13 were chosen for the second step of evaluation (Table 6). Compound 12 showed the most potent activity among this series of derivatives. It showed an excellent control at the application rate of 7.8 ppm by both preventive and curative application, being more active than the original lead compound A, 2-cyano-N-[(ethylamino)carbonyl]-2-(methoxyimino)acetamide (cymoxanil) and N-(2, 6-dimethylphenyl)-N-(phenylacetyl)alanine methyl ester (benalaxyl).

Our studies indicated that these 2-(alkoxyimino)-2-cyano-N-(substituted 4,5-dihydroisoxazol-3-ylmethyl)acetamide derivatives, a new class of fungicides, are highly effective against cucumber downy mildew.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Application</th>
<th>Control(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Preventive</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Curative</td>
<td>75</td>
</tr>
<tr>
<td>13</td>
<td>Preventive</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Curative</td>
<td>75</td>
</tr>
<tr>
<td>A</td>
<td>Preventive</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Curative</td>
<td>70</td>
</tr>
<tr>
<td>Cymoxanil</td>
<td>Preventive</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Curative</td>
<td>55</td>
</tr>
<tr>
<td>Benalaxyl</td>
<td>Preventive</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Curative</td>
<td>70</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

We wish to express our thanks to Dr. Masami Doteuchi of Shionogi & Co., Ltd., for his encouragement and permission to publish this work. We also wish to express our thanks to Drs. Toshikazu Ohtsuka and Tetsuyoshi Hayashi for invaluable discussions and encouragement. We are also indebted to Mr. Hiroki Tsuji for his skilled technical assistance.

REFERENCES

要　約

4,5-ジヒドロイソオキサゾール環を有する2-アルコキシミノアセタミド誘導体の合成と殺菌活性

甲斐浩幸, 市場常男, 西田邦好, 益子進, 高瀬 晃

我々は先に、2-ジアノ-2-メトキシミノ-N-(5,5-ジメチル-4,5-ジヒドロイソオキサゾール-3-イール)アセタミドがキュウリのペと病に対して高い活性を有することを報告した。本研究では、さらに高い抗病性と病活性を有する化合物の探索を目的として、4,5-ジヒドロイソオキサゾール環を有する2-アルコキシミノアセタミド誘導体と関連化合物を合成し、キュウリのペと病に対する殺菌活性を評価した。その結果、アセタミドの塩素原子に4,5-ジヒドロイソオキサゾール-3-イールメチル基を有する化合物が高い活性を示した。中でも、2-ジアノ-2-メトキシミノ-N-(5-メチル-4,5-ジヒドロイソオキサゾール-3-イールメチル)アセタミドは、最も高い抗病と病活性を示した。