Molecular signaling mechanisms that mediate exercise training effects on insulin sensitivity

Masaru Nagasaki¹*, Yoshiharu Shimomura² and Yuzo Sato¹

¹ Department of Health Science, Faculty of Psychological & Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi 470-0915, Japan
² Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

Received: December 26, 2012 / Accepted: January 8, 2013

Abstract
Studies on exercise-induced stimulation of glucose uptake into skeletal muscle have indicated that components of the insulin signal transduction system, such as insulin receptor, IRS-1, and PI 3-kinase, are not involved in the mechanism of glucose uptake elicited by an acute bout of exercise, suggesting that the underlying molecular mechanism, by which an acute bout of exercise increases glucose uptake, is distinct from that of insulin. Sedentarism, matura-
tion and dietary factors such as high-fat feeding cause insulin resistance, which is a result of de-
fective signal transduction. On the other hand, exercise training and calorie restriction improve
and prevent insulin resistance. The exercise training effects represented by improved insulin
action in vivo are chiefly attributed to changes in body composition factors such as increased
muscle volume and decreased body fat, and changes in post-insulin receptor mechanisms.

Keywords: insulin sensitivity, exercise training, skeletal muscle, glucose uptake, obesity

Introduction
It is well established that insulin sensitivity is exacerbated by sedentarism and obesity. On the other hand, insulin sensitivity in skeletal muscle increases with exercise training and calorie restriction, particularly when accompanied by weight loss. The exercise training effects represented by improved insulin action in vivo are chiefly attributed to changes in body composition factors such as increased muscle volume and decreased body fat, and changes in post-insulin receptor mechanisms. This review provides a contemporary perspective of our understanding of molecular and cellular events that occur in skeletal muscle in response to exercise, including its acute and chronic effects.

Molecular mechanisms of insulin- and exercise-stimu-
lated glucose uptake
Insulin and exercise are the two most physiologically relevant stimulators of skeletal muscle glucose uptake, increased by translocation of glucose transporter 4 (GLUT4). In skeletal muscle, insulin stimulation results in the rapid phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1) on tyrosine residues and activation of phosphatidylinositol 3-kinase (PI 3-ki-

*Correspondence: ngsk@dpc.agu.ac.jp

Fig. 1 Insulin receptor (A), IRS-1 (B), and PI 3-kinase (C) protein levels in rat gastrocnemius muscle. Values are the mean ± SE for 7 rats. (☐) Sedentary rats; (■) trained rats. †Significantly different vs sedentary rats at 4 weeks (P< .0083)².
ns). Downstream of PI 3-kinase, the protein kinases Akt and atypical protein kinase c (aPKC) have been identified in mediating insulin-stimulated GLUT4 translocation.

Exercise increases AMP-activated protein kinase (AMPK) activity, leading to changes in glucose uptake. However, inhibition of AMPK has little or no effect on contraction-induced glucose uptake. Ca\(^{2+}\)/calmodulin-dependent protein kinase II (CaMKII) and LKB1 are upstream regulators of AMPK.

Chronic effects of exercise training on insulin signaling molecules

It is well established that exercise training improves insulin sensitivity. The exercise effects, represented by improved insulin action in vivo, are chiefly attributed to changes in body composition factors such as increased muscle volume and decreased body fat, increased blood flow to the exercising muscles, and changes in the post-insulin receptor mechanisms. GLUT4 protein expression also increases in response to exercise training, facilitating glucose uptake into trained muscles. We have reported that exercise training prevents maturation-induced decreases in insulin sensitivity, and suggested that the improvement in insulin sensitivity elicited by exercise training was in part attributed to an increase in insulin-sensitive GLUT4 on the plasma membrane, and to the maintenance of IRS-1 and PI 3-kinase (Fig. 1) in rat skeletal muscle. GLUT4 protein expression increased in muscles of wild type mice after repeated treatment with the AMPK agonist AICAR, but it did not change in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-knockout mice. Thus, the molecular basis for the exercise-training-mediated improvement in glucose transport is attributable, at least in part, to PGC-1α.

Effects of calorie restriction combined with exercise training on insulin sensitivity

In obese humans, calorie restriction and exercise training improve insulin sensitivity. Sedentarism and obesity lead to insulin resistance, mainly through fat-derived adipocytokines. Fatty acid have been shown to cause a reduction in glucose uptake after insulin stimulation. Tumour necrosis factor-α (TNF-α) can impair IRS-1 docking to the insulin receptor, and this inhibits insulin signaling. Exercise training alone, and in combination with diet-induced weight loss, enhances mRNA expression of adiponectin receptors, but only calorie restriction-induced weight loss increases the levels of circulating adiponectin in obese. Thus, weight loss-induced improvement in insulin sensitivity is chiefly attributed to changes in adipocytokines.

Acknowledgements

This research was supported in part by The Descente and Ishimoto Memorial Foundation for the Promotion of Sports Science.

References

