Force generation and neuromuscular activity in multi-joint isometric exercises: comparison between unilateral and bilateral stance

Seita Kuki1*, Takuya Yoshida2, Masamichi Okudaira1, Yu Konishi3, Keigo Ohyama-Byun1 and Satoru Tanigawa2

1 Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
2 Faculty of Health and Sports Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8574, Japan
3 Department of Physical Education, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686, Japan

Received: June 15, 2018 / Accepted: August 22, 2018

Abstract The purpose of the present study was to look at lower extremity force generation and neuromuscular activation by comparing isometric mid-thigh pull in the unilateral stance (IMTPUni) and bilateral stance (IMTPBi), and identifying the characteristics of IMTPUni. Fifteen male collegiate athletes (age: 20.60 ± 1.50 years, height: 1.74 ± 0.05 m, mass: 69.04 ± 4.23 kg) performed IMTPUni and IMTPBi as multi-joint isometric exercise. Ground reaction force (GRF) was measured to assess force generation during IMTP. Surface electromyography (EMG) was used to measure neuromuscular activation in the gluteus maximus (Gmax), gluteus medius (Gmed), semitendinosus, biceps femoris (BF), rectus femoris (RF) and vastus lateralis (VL), which were represented as average rectified values (ARVs). The EMG of the muscles during IMTPUni was normalized by IMTPBi to compare relative change among muscles. The co-contraction index (CI) during IMTPUni was also calculated by using normalized EMG. As a result, IMTPBi was significantly higher in BF than IMTPUni. However, in IMTPUni, although only one leg contributed to produce force, GRF of IMTPUni reached 80% of neuromuscular activity relative to IMTPBi. While the neuromuscular activation of Gmax, Gmed, BF, RF and VL was significantly higher proportionately in IMTPUni compared to IMTPBi, neuromuscular activation was even greater in Gmax and Gmed. The co-contraction index (CI) was increased in IMTPUni. The features of neuromuscular activation during IMTPUni were similar to the single leg squat and step-up exercise examined in previous studies due to the necessity to support the body with a single leg.

Keywords: isometric exercise, unilateral stance, IMTP, neuromuscular activation

Introduction

Multi-joint exercises, rather than single joint exercises, are generally recommended to assess the strength of athletes, as athletic movements are mostly composed of multi-joint actions1,2. Therefore, multi-joint exercises are preferentially incorporated into resistance training programs for athletes. Multi-joint exercises with unilateral stance are also available and effective for athletes who need rehabilitation after injuries3. As the base of support is reduced for unilateral stance exercises compared to bilateral stance exercises, the former is less stable than the latter. In unilateral stance, the hip abductors and hamstrings contribute to maintain balance by enhancing stability at the hip and knee joints4,5. Previously, McCurdy et al.6 clarified that the neuromuscular activation of gluteus medius (Gmed) and hamstrings in single leg squats was significantly greater than in double leg squat. Furthermore, Ebben et al.7 also demonstrated that the activity of hamstrings and rectus femoris (RF) was greater in step-up exercise, a form of unilateral stance exercise, than in double leg squat and deadlift. Indeed, previous studies demonstrated that more muscles were able to be recruited without reduction of strength exertion during unilateral stance exercise8,9. On the other hand, co-contraction, which is the simultaneous activation of agonist and antagonist around a joint, contributes to maintaining balance10. Especially concerning knee flexion and extension muscles, it is speculated that these muscles are activated in this manner during unilateral stance exercise11.

The isometric mid-thigh pull (IMTP) in the unilateral stance (IMTPUni) is an alternative to unilateral multi-joint exercises and it is known to be a relatively safe method for muscle strength assessment12. Previously, Thomas et al.13 reported that variables of the IMTPUni significantly correlated with sprint time, but variables of the IMTP in the bilateral stance (IMTPBi) did not. However, they didn’t demonstrate objective evidence as to why IMTPUni can be a predictor of sprint time. Based on these results, it’s possible that IMTPUni recruits and coordinates muscles
in a different manner even though the same movement is performed using a single leg as that which is performed in IMTPBi using both legs. It is important to identify the characteristics of IMTPUni in terms of neuromuscular activation pattern. To our knowledge, however, no study has previously examined the surface electromyography (EMG) of muscles during IMTPUni. As mentioned above, as close kinetic chain exercise with single leg stance would increase the number of muscles recruited and augment muscle activation\(^6,7\), it is impossible to reveal the characteristics of IMTPUni without examining the EMG of each muscle. Therefore, the purpose of the present study was to compare force generation and neuromuscular activation of the lower extremity between IMTPUni and IMTPBi for identifying the characteristics of IMTPUni. Also, we aimed to compare the relative changes of neuromuscular activation from IMTPBi to IMTPUni among muscles and examine the co-contraction index (CI) during IMTPUni. The hypothesis of the present study was that muscles around a hip joint would be activated particularly in IMTPBi, because it is required to support the pelvis due to single leg stance. The results of the present study could provide evidence of how unilateral isometric exercise could be used in training and rehabilitation.

Materials and Methods

Participants. Fifteen male collegiate athletes (age: 20.60 ± 1.50 years, height: 1.74 ± 0.05 m, body mass: 69.04 ± 4.23 kg) volunteered for this study. They were screened for injuries that could affect the performance of the isometric exercises. Information regarding this study was provided to all individuals prior to participation. The Ethics Committee for the Institute of Health and Sport Sciences, University of Tsukuba, approved all procedures (approval number: 28-10).

Measures. In the present study, IMTP was used as a multi-joint isometric exercise. Participants performed IMTPBi and IMTPUni during the same testing session. The ground reaction force (GRF) and surface electromyography (EMG) of the lower extremities were simultaneously measured during IMTPBi and IMTPUni. For EMG, neuromuscular activation of the gluteus maximus (Gmax), Gmed, semitendinosus (ST), biceps femoris (BF), RF, and vastus lateralis (VL) were assessed. The neuromuscular activation was evaluated by EMG. All participants practiced IMTPBi and IMTPUni before IMTP testing, which was separated by over 48 hours.

IMTP Testing. The participants performed IMTPBi by standing on two force plates sized 0.6 × 0.6 m (Ex-Jumper, DKH, Tokyo, Japan) to collect the GRF in a custom-designed power rack. Lifting straps and athletic tape were used to remove the influence of grip strength. It was verified that the knee and hip angles fell to 120° and 140°, respectively\(^13\). Moreover, instruction was provided so participants would keep the trunk in an upright position\(^14\). For IMTPUni, the knee and hip angles of the stance leg and trunk position were also standardized as well as in the IMTPBi. The knee angle of the unsupported leg during IMTPUni was to be held at 90°, and a swinging motion was prohibited\(^5\). After general and specific warm-up, the participants performed IMTPBi. After that, IMTPUni was performed in the right leg and left leg in a randomized order. Two practice attempts at 50% and 75% of each participant’s perceived maximum effort were performed before IMTPBi and IMTPUni as a warm-up\(^9\). Participants were instructed to pull the bar as hard and fast as possible for four seconds.

EMG. Participant hair was shaved at the site of the EMG electrode placement, and the skin was also cleaned with alcohol before placing the electrode. Bipolar silver/silver-chloride active bar electrodes were used to record EMG signal (Nihon Kohden, Tokyo, Japan). The bar electrodes were 10-mm length and 2-mm width, and two bar electrodes were attached on both legs with the contact surfaces in longitudinal alignment with the muscle fibers and at an inter-electrode distance of 20-mm. The EMG signals were bandpass-filtered between 10 and 500 Hz. In off-line processing, the placement of the EMG electrodes on each muscle was determined in accordance with the SENIAM protocol, which is the global standard for collecting EMG data\(^7\).

Data Analysis. For IMTPBi, vertical GRF was sampled at 1000 Hz on each leg\(^18\). The total GRF of the right and left legs was used to determine the onset of the pull as the point when GRF was achieved at 105% of participant body weight. Force outputs were calculated based on GRF sampling at peak force (PF) during four seconds of pulling\(^10\). This variable has been used to evaluate maximum strength in a previous study\(^14,16,19\). The variable was calculated as absolute GRF minus participant body weight\(^19\). For IMTPUni, the PF was also determined based on the vertical GRF sampled on the stance leg. Testing attempts were performed three times for IMTPBi and IMTPUni, and the order of the right and left legs in IMTPUni was randomized. The top two PF trials were selected from the three trials and averaged for further analysis. For IMTPUni, the stronger leg, which was determined by a larger PF value between the leg trials, was used to analyze GRF and muscle activity. The test-retest reliability for force outputs met the standard for reliability of IMTP variables, which was intra-class correlation coefficient (ICC) > 0.70\(^20\).

All EMG signals sampled at 1000 Hz were analyzed. GRF and raw data of EMG for each muscle during IMTPBi and IMTPUni are shown in Fig. 1. Neuromuscular activation during IMTPBi and IMTPUni were represented as average rectified value (ARV) which was averaged in two time periods to ensure consistency with the force vari-
ables like PF. Specifically, it was averaged EMG data 100 milliseconds (ms) before and after the point when PF was achieved on GRF. Moreover, EMG during IMTP\(_{\text{uni}}\) was normalized by IMTP\(_{\text{bi}}\) because the joint angles of those exercises were the same. By using the normalized EMG, the relative change in neuromuscular activation was compared from bilateral stance to unilateral stance among the muscles.

In the present study, the co-contraction index (CI) was analyzed to investigate stability in the knee joint during IMTP\(_{\text{uni}}\). Normalized EMG was used to determine the CI. The neuromuscular activation of knee flexors (K\(_{\text{flex}}\)) was calculated as the averaged value of ST and BF. While, the neuromuscular activation of knee extensors (K\(_{\text{ext}}\)) was calculated as the average value of RF and VL. The formula of the CI is shown here as used in a previous study\(^{11}\):

\[
\text{Co-contraction index (CI)} = (K_{\text{flex}} + K_{\text{ext}}) \times \left(\frac{\text{EMG}_{\text{smaller}}}{\text{EMG}_{\text{greater}}}\right).
\]

where, EMG\(_{\text{smaller}}\) is the smaller value of K\(_{\text{flex}}\) and K\(_{\text{ext}}\), and EMG\(_{\text{greater}}\) is the greater value of them. Since the greater value between K\(_{\text{flex}}\) and K\(_{\text{ext}}\) is dependent on the individual, the definition such as “Smaller” and “Greater” is used in the formula\(^{11}\).

Statistical Analysis. Descriptive analysis was represented as mean and standard deviation (SD). ICC was used to evaluate for within-session test-retest reliability of force.

Fig. 1 Ground reaction force and raw data of EMG of each muscle during bilateral and unilateral stance IMTP.
output and EMG. The normality test of data was analyzed by Shapiro-Wiki. For PF, the paired t-test was used to determine the difference of the PF between IMTPBi and IMTPUni. For neuromuscular activation in the lower extremities, Wilcoxon signed rank test was used to compare IMTPBi and IMTPUni. On the other hand, the Friedman test was performed to analyze the significant difference among muscles in normalized EMG during IMTPUni, and Wilcoxon signed rank test was selected as a post-hoc test. Cohen’s d value was calculated based on the mean and SD to show practical significance. All statistical analysis was performed using SPSS v22 software (IBM, New York, USA). The criterion for statistical significance was considered as p < 0.05.

Results

The descriptive data for PF is shown in Table 1. As a result of the normality test by Shapiro-Wiki, PF had a normal distribution. As a result of comparing PF, IMTPBi was significantly higher than IMTPUni (p < 0.05, d = 0.94). Although the PF was significantly higher in IMTPBi than in IMTPUni, IMTPUni could be achieved at 83% relative to IMTPBi.

The descriptive data and the ICC in each muscle during IMTPBi and IMTPUni are shown in Table 2. Indeed, a comparison of ARV between IMTPBi and IMTPUni for each muscle is shown in Fig. 2. As the result of the normality test by Shapiro-Wiki, most of the variables in neuromuscular activation were not a normal distribution. Therefore, the Wilcoxon signed rank test was employed to compare neuromuscular activation between IMTPBi and IMTPUni as a non-parametric test. As a result, the Wilcoxon signed rank test revealed that neuromuscular activation of the lower extremities in IMTPUni was significantly greater than IMTPBi in Gmax (p < 0.05, d = 1.14), Gmed (p < 0.05, d = 0.65), BF (p < 0.05, d = 0.48), RF (p < 0.05, d = 0.98), and VL (p < 0.05, d = 0.87).

As a result of the normality test by Shapiro-Wiki, most of the variables were not a normal distribution as well as unnormalized EMG. Therefore, the Friedman test and Wilcoxon signed rank test were performed to compare normalized EMG among muscles as a non-parametric test. The result of the comparison is shown in Fig. 3, in which Gmax and Gmed were significantly greater than RF and VL (p < 0.05).

The CI during IMTPUni was analyzed, which was 229.71 for mean and 97.64 for SD. It was not possible to com-

<table>
<thead>
<tr>
<th>Variable</th>
<th>IMTPBi Mean ± SD</th>
<th>IMTPUni Mean ± SD</th>
<th>Paired t-test Significance</th>
<th>Cohend’s d</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF (N)</td>
<td>2021.54 ± 435.08</td>
<td>1674.13 ± 286.00</td>
<td>†</td>
<td>0.94</td>
</tr>
</tbody>
</table>

* †: significant difference (p < 0.05).

<table>
<thead>
<tr>
<th>Bilateral stance IMTP</th>
<th>Unilateral stance IMTP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF (mV)</td>
<td></td>
</tr>
<tr>
<td>G_{max}</td>
<td>0.054 ± 0.037</td>
</tr>
<tr>
<td>G_{med}</td>
<td>0.071 ± 0.069</td>
</tr>
<tr>
<td>ST</td>
<td>0.054 ± 0.048</td>
</tr>
<tr>
<td>BF</td>
<td>0.065 ± 0.061</td>
</tr>
<tr>
<td>RF</td>
<td>0.016 ± 0.007</td>
</tr>
<tr>
<td>VL</td>
<td>0.059 ± 0.033</td>
</tr>
</tbody>
</table>

* ICC: Intra-class correlation coefficient.
pare significantly between IMTPuni and IMTPbi in CI for the knee joint because neuromuscular activity during IMTPuni was normalized by that of IMTPbi as 100%. When 100% of neuromuscular activity in IMTPbi is substituted to the formula of the CI, the co-contraction index during IMTPbi can be calculated as 200. Therefore, the co-contraction index during IMTPbi was used as a reference value which was calculated as 200.

Discussion

Therefore, the purpose of the present study was to compare force generation and neuromuscular activation of lower extremity between IMTPuni and IMTPbi for identifying the characteristics of IMTPuni. Also, we aimed to compare the relative changes in neuromuscular activation between IMTPbi to IMTPuni among muscles and examine
the CI during IMTPUni. In this study, we chose the IMTPUni as unilateral stance isometric exercise, since IMTPUni is becoming a general tool to safely evaluate muscle strength in detail\(^{15}\). Furthermore, there is a significant correlation between the variables of IMTPUni and sprint time\(^{9}\).

Our results revealed that the PF was larger in bilateral stance exercise than in unilateral stance exercise. However, in IMTPUni, even though only one leg contributed to producing force, GRF of IMTPUni achieved 80% of GRF of IMTPBi. Similarly, Thomas et al.\(^{10}\) demonstrated that IMTPUni could achieve approximately 90% of the force generation of the bilateral stance, whereas another previous study demonstrated that the force exerted by a single leg during a knee extension exercise was approximately 60% of the bilateral stance\(^{9}\). Although both studies demonstrated that unilateral stance exercise could achieve more than 50% of the force production as compared with bilateral exercise, the results of the present study and that of Thomas et al.\(^{10}\) demonstrated that the increment ratios were much larger in IMTP than knee extension. The difference between these studies might be associated with the form of exercise: knee extension exercise is classified as an open kinetic chain exercise, whereas IMTPUni is classified as a closed kinetic chain exercise, as the leg is fixed on the ground during activity.

In addition to augmentation of PF, the surface EMG measurement of the present study demonstrated that the activity of G\(\text{max}\) and G\(\text{med}\) in IMTPUni was significantly increased compared to IMTPBi. While, normalized EMG in G\(\text{max}\) and G\(\text{med}\) was significantly greater than RF and VL. These results could mean that the magnitude of relative change of neuromuscular activation is different depending upon the muscle. Moreover, the relative changes of neuromuscular activation in gluteus muscles during IMTPUni were well over 200%, 243.21% in G\(\text{max}\) and 280.10% in G\(\text{med}\). Especially in the case of G\(\text{med}\), it was activated almost three times more in IMTPUni than IMTPBi. These results indicate that the gluteus muscles were activated in a different manner during IMTPUni compared to IMTPBi, and these results support our hypothesis. The possible reason why G\(\text{max}\) and G\(\text{med}\) were more activated in IMTPUni might be associated with unstable body balance, as the legs are fixed on the ground with a single leg stance instead of both legs during IMTPUni, making the whole body unstable. The increments in G\(\text{max}\) and G\(\text{med}\) activation are likely due to the effort of the body to regain the balance lost due to the reduced base of support. In such a situation, specifically, G\(\text{max}\) and G\(\text{med}\) contribute to disturbing the drop down of the pelvis and the attempt to maintain the balance of the pelvis by elevating its opposite side. In a previous study, Crossley et al.\(^{13}\) used a dynamometer to demonstrate that participants who were superior in a single leg squat task were stronger in hip adduction torque compared to participants who were inferior. Thus, in single leg squat, they argued that the G\(\text{max}\) and G\(\text{med}\) play an important role in stabilizing the balance of the pelvis in closed kinetic chain exercise with unilateral stance. Additionally, during exercise with unilateral stance, the hip abductors laterally elevate the pelvis on the side of the unsupported leg to prevent losing whole-body balance\(^{21}\). Elevating the pelvis on the side of the unsupported leg would push the opposite side of the pelvis down, which would cause the vertical component of GRF\(^{22}\). Accordingly, based on the significant increment of neuromuscular activation in G\(\text{max}\) and G\(\text{med}\), the lateral elevation of the pelvis contributes to the incremental vertical component of GRF in unilateral stance isometric exercise.

Another novel finding of surface EMG in the present study is that neuromuscular activities of BF, RF and VL were augmented during IMTPUni compared to IMTPBi. Especially, increased neuromuscular activity of BF was able to contribute to increased knee stability in closed kinetic chain exercises\(^{23}\). Regarding the unilateral stance exercises, it was suggested that hamstring activity increased during the single leg squat and step-up exercises compared to double leg squat and deadlift because of increased knee instability due to a reduced support base\(^{6,7}\). McCurdy et al.\(^{19}\) revealed significant augmentation of hamstrings in single leg squat relative to double leg squat exercise; and this finding supports our results about neuromuscular activation of BF. The simultaneous activation of agonists and antagonists contributes to increased knee joint stability, which has been known as co-contraction\(^{9}\). Although a significant comparison of the co-contraction index (CI) between IMTPUni and IMTPBi could not be performed in the present study, mean value of the CI during IMTPUni was much higher than a referent value of IMTPBi. From the perspective of anatomy, a high CI would be associated with knee stability in extension/flexion and varus/valgus\(^{10,23}\). Therefore, IMTPUni would activate the hamstrings and quadriceps femoris to augment joint stability at the knee through co-contraction. Accordingly, the results of the present study suggest that unilateral stance isometric exercise is also characterized by using the co-contraction of muscles around the knee joint as well as hip abductors. This stabilization via recruitment of hip abductors and co-contraction of BF, RF and VL could be associated with running performance and change-of-direction tasks\(^{2,24,25}\).

Limitations in the present study include that we did not examine the surface EMG of upper body muscles. It is assumed that upper body muscles, such as the trapezius and elector spinae, could also produce force during IMTP. Further investigation should be performed to examine possible differences in upper body muscles during unilateral and bilateral stances. While only the EMG of muscles was investigated in the present study, it would be difficult to quantify the number of recruited muscles. Therefore, an additional analysis of examining motor unit firing properties during IMTPUni might be effective for this research area. Additionally, there was a limitation regarding the CI. Although a significant comparison of the
co-contraction index (CI) between IMTP\textsubscript{Uni} and IMTP\textsubscript{Bi} could not be performed in the present study, it would be preferable to compare the CI to clarify its increase during IMTP\textsubscript{Uni}.

In conclusion, the results of the present study were that the force generation and neuromuscular activation of G\textsubscript{max}, G\textsubscript{med}, BF, RF and VL were increased in IMTP\textsubscript{Uni} compared to IMTP\textsubscript{Bi}. Also, a comparison of relative change of neuromuscular activation among muscles revealed that G\textsubscript{max} and G\textsubscript{med} were more significantly activated than RF and VL, showing that, in particular, the muscles around a hip joint would be activated. Moreover, analysis of the CI using normalized EMG suggested that co-contraction around a knee joint would be more enhanced during IMTP\textsubscript{Uni} compared to IMTP\textsubscript{Bi}. The features of neuromuscular activation during IMTP\textsubscript{Uni} were similar to the single leg squat and step-up exercise in previous studies due to the necessity of supporting the body with one leg. Therefore, unilateral stance isometric exercise like IMTP\textsubscript{Uni} could be incorporated into a series of exercises, using a single leg in rehabilitation and training, to learn how to enhance stability through activating the muscles around the hip and knee joint.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

References

