Full Paper

A Critical Role of TRPM2 in Neuronal Cell Death by Hydrogen Peroxide

Shuji Kaneko1,*, Seiko Kawakami1, Yuji Hara2, Minoru Wakamori2, Etsuko Itoh1, Toshiyuki Minami1, Yuki Takada3, Toshiaki Kume3, Hiroshi Katsuki3, Yasuo Mori2, and Akinori Akaike3

1Department of Molecular Pharmacology and 2Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
2Laboratory of Molecular Biology, Graduate School of Engineering, Kyoto University, Nishigyo-ku, Kyoto 615-8510, Japan

Received February 2, 2006; Accepted March 13, 2006

Abstract. A brief exposure to hydrogen peroxide (H2O2) induces severe deterioration of primary cultured neurons in vitro. We have investigated a link between the H2O2-induced neuronal death and Ca2+-permeable TRPM2 channels regulated by ADP-ribose (ADPR). In cultured cerebral cortical neurons from fetal rat, TRPM2 proteins were detected at cell bodies and neurite extensions. Application of H2O2 to the cultured neurons elicited an increase in intracellular Ca2+ concentration ([Ca2+]i) caused by Ca2+ influx and the Ca2+-dependent neuronal death in a similar concentration range. Molecular cloning of TRPM2 cDNA from rat brain revealed several differences in amino acid sequences within the Nudix box region as compared with those of human and mouse TRPM2. ADPR-induced current responses, H2O2-induced Ca2+ influx, and H2O2-induced cell death were induced in human embryonic kidney cells heterologously expressing rat TRPM2. Treatment of cultured neurons with small interfering RNA against rat TRPM2, which efficiently suppressed immunoreactive TRPM2 content and the H2O2-induced Ca2+ influx, significantly inhibited H2O2-induced neuronal death. These results suggest that TRPM2 plays a pivotal role in H2O2-induced neuronal death as redox-sensitive Ca2+-permeable channels expressed in neurons.

Keywords: ADP-ribose, cation channel, calcium homeostasis, cerebral cortex, TRP channel

Introduction

A variety of neurodegenerative disease states have been associated with oxidative damage. Such stress is thought to be mediated by excessive exposure of cells to reactive oxygen/nitrogen species, which can be generated by ischemia/reperfusion, glutamate overflow, β-amyloid peptides, neurotoxins, oxidative burst as part of immune response, or by the presence of free transition metal ions (1–5). Hydrogen peroxide (H2O2) is a stable and freely diffusible form of reactive oxygen species (ROS) normally produced in living cells including neurons. Substantial evidences indicate etiological links between generation of H2O2 and neurodegenerative diseases (6). Exposure to H2O2 induced both apoptotic-like delayed neuronal death and necrosis in cultured neurons (7), which are mediated by rise in intracellular Ca2+ concentration ([Ca2+]i), mitochondrial dysfunction, and activation of poly(ADP-ribose) polymerase (PARP) responding to DNA damage (8, 9). Recently, the rise in [Ca2+]i by H2O2 has been ascribed to the activation of non-selective cation channels in striatal neurons (10), which may lead to irreversible depolarization and unregulated Ca2+ entry followed by neuronal death (6, 11).

Several members of the TRP superfamily channels are regulated by intracellular conditions including redox states (12). One of them, TRPM2, formerly known as TRPC7 or LTRPC2, is an ADP-ribose (ADPR)-gated Ca2+-permeable, nonselective cation channel having a putative ADPR-recognizing Nudix box motif in the intracellular C-terminal tail (13, 14). TRPM2 is highly expressed in the brain (15, 16) and in immune cells of the monocytic lineage (13, 14). In the brain, TRPM2 is expressed in activated microglial cells and functions as a Ca2+ entry pathway triggered by H2O2 and ADPR, while in situ hybridization data rather indicated the expression...
of TRPM2 mRNA throughout the mouse brain including neurons (17). In the present study, we investigated the expression of TRPM2 in cultured cortical neurons and possible involvement of the non-selective cation channel in H2O2-induced Ca2+ influx and cell death using cDNA cloning and gene silencing by small interfering RNA (siRNA) techniques.

Materials and Methods

Cortical cultures
Primary cultures of cortical neurons were obtained from E17-E19 Wistar rat embryos according to the procedures published previously (18). In brief, single cells mechanically isolated from cerebral cortices of fetal rats were plated directly on Falcon 60-mm dishes (for cell viability assay) or on polyethyleneimine-coated glass coverslips that were placed in 60-mm dishes or 12-well plates (for immunostaining and Ca2+ imaging). Cultures were incubated in Eagle’s minimal essential salt medium (Eagle’s MEM) supplemented with 2 mM L-glutamine, 11 mM glucose, 24 mM NaHCO3, 10 mM HEPES, pH 7.4, and 10% heat-inactivated fetal bovine serum (1–8 days after plating) or 10% heat-inactivated horse serum (after 9 days from plating). Growth of non-neuronal cells was suppressed by addition of 10 µM cytosine arabinoside after 7 days of plating. Mature cultures were used at 9–14 days in vitro (DIV). When gene expression efficacy was tested, cultures were transfected with plasmid encoding EGFP and Lipofectamine 2000 at 5 DIV and incubated for 1–2 days.

Cell line culture and transfection
Human embryonic kidney (HEK) 293 and tsA-201 cells were grown to 80% confluence in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum and 0.06% kanamycin. Cells were split and plated on glass coverslips at 10% confluence 12 h before transfection. The medium was renewed immediately before transfection with rTRPM2/pcDNA3z (1–2 µg plasmid/60-mm dish) with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). The cells were maintained at 37°C for at least 18 h before Ca2+ imaging, immunostaining, Western blotting, current recording, and cell viability assays.

Molecular cloning of rat TRPM2
A rat brain TRPM2 gene was cloned by RT-PCR according to the similarity of human (NM_003307) and mouse (NM_138301) TRPM2 cDNA sequences to those of a rat genome contig (NW_043433) and an annotated TRPC7-like gene (LOC294329). Poly(A)+ mRNA was extracted from 3-week-old rat cerebral cortices by the guanidium/CsCl method followed by oligo(dT)-cellulose column selection. Single-strand DNA was synthesized with a primer (5’tcagaagttagcgaacaacag-3’) by reverse transcriptase XL from avian myeloblastosis virus (Takara Bio, Ohtsu). PCR reaction was performed for 35 cycles at an annealing temperature of 60°C by the Expand High Fidelity PCR system (Roche Diagnostics, Indianapolis, IN, USA) with another PCR primer (5’-ctccctctggtggatgtcgg-3’). A 4.6-kb product was extracted from agarose gel, inserted into pGEM-T easy vector (Promega, Madison, WI, USA) and sequenced. The nucleotide sequences of two independent PCR products completely matched each other and deposited to Genbank (AB193179). The full length of rat TRPM2 was subcloned into pcDNA3.1/Zeo vector (Invitrogen) to yield a plasmid rTRPM2/pcDNA3z.

Immunostaining
Two rabbit polyclonal antibodies, M2-C and M2-Nudix, were raised against conjugated peptides corresponding to specific C-terminal regions of mouse TRPM2 (amino acid sequences: (C)KENYLQNQQYQQKQRPEQK at 1126–1144 and (C)GSREPGLMPPRLKK at 1387–1400). Cells on coverslips were fixed with 4% paraformaldehyde in phosphate-buffered saline (PBS) for 30 min at room temperature, washed three times with PBS, and permeabilized for 15 min with 0.2% Triton X-100 in PBS. The cells were incubated overnight at 4°C with PBS containing one or two of the following antibodies: anti-mouse TRPM2 antibody (1:300–3000 dilution), anti-MAP2 antibody (1:400 dilution, M-1406; Sigma, St. Louis, MO, USA), an anti-GAPDH antibody (1:30000 dilution; Ambion, Austin, TX, USA), anti-GFAP antibody (1:50 dilution, Sigma). For immunofluorescence analysis, Alexa Flour 488-labeled goat anti-rabbit IgG and/or Alexa Fluor 568-labeled anti-mouse IgG (Molecular Probes, Eugene, OR, USA) was used at 1:200 dilution as the second antibody for visualization with a laser scanning confocal imaging system (MRC-1024; Bio-Rad Laboratories, Hercules, CA, USA). In 3,3’-diaminobenzidine (DAB) staining, the cells were visualized with the ABC system (Vector Laboratories, Burlingame, CA, USA) and DAB. The coverslips were mounted with Vectashield (Vector Lab) on slides and photographed under a Nikon TE300 microscope with a Coolpix E4500 digital camera.

Western blotting
Membrane pellets were obtained from cells by brief centrifugation and lysed with a lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1% Triton X-100, 3 mM EDTA, 20 µg/ml aprotinin, 2 mM PMSF, pH 7.4). An aliquot of lysate was added to an equal volume of sample buffer.
(124 mM Tris-HCl, pH 6.8, 10% glycerol, 4% SDS, 4% 2-mercaptoethanol, 0.02% bromophenol blue) and loaded on a 7% SDS-polyacrylamide gel. Proteins were blotted onto Immobilon-P PVDF transfer membranes (Millipore, Billerica, MA, USA). After incubation with blocking solution for 1 h, the membranes were incubated overnight at 4°C with the appropriate primary antibody diluted in blocking solution. After three washes, membranes were incubated for 1 h at room temperature with either anti-mouse IgG horseradish peroxidase-conjugated whole sheep antibody or anti-rabbit IgG. After three washes, specific bands were detected by ECL (Amersham Pharmacia Biotech, Piscataway, NJ, USA). Blots were exposed to Fuji X-ray film, and the image was digitized by an image scanner.

Ca²⁺ imaging

Intracellular Ca²⁺ concentration was measured with the fluorescent Ca²⁺ indicator fura-2 acetoxyethyl ester (fura-2 AM; Dojindo, Kumamoto). Cells on glass coverslips were incubated for 30 min at 37°C in HEPES-buffered saline containing 5 μM fura-2AM. After rinsing with HEPES buffer, the coverslip was mounted on the recording chamber of a Nikon fluorescence microscope equipped with an ARGUS-HiSCA imaging system (Hamamatsu Photonics, Shizuoka). The recording chamber was initially perfused with HEPES buffered saline at a flow rate of 1 ml/min, and test solutions were applied by switching the perfusion line. The fluorescent image at 500 nm was scanned at an interval of 5 s with alternative excitation at 340 and 380 nm at room temperature and stored in a computer with Aquacosmos imaging software (Hamamatsu Photonics). The fluorescence ratio ($F_{340/380}$) within an image area of an individual cell was calculated.

Electrophysiology

Whole-cell currents were recorded at room temperature with an Axopatch 200B amplifier (Axon Instruments, Union City, CA, USA). Currents were sampled and analyzed with pCLAMP 6.02 software (Axon). Patch pipettes were made from borosilicate glass capillaries (1.5-mm outer diameter; Hilgenberg, Malsfeld, Germany) using a P-97 micropipette puller (Sutter Instruments, Novato, CA, USA) and the resistance ranged from 2 to 4 Mohm when filled with the pipette solution (105 mM CsOH, 105 mM aspartic acid, 40 mM CsCl, 1.3 mM CaCl₂, 2 mM MgCl₂, 5 mM EGTA, 2 mM ATP2Na, 5 mM HEPES, pH 7.25 with CsOH, and calculated [free-Ca²⁺] was 50 nM). Rapid change of external solution was made by a modified “Y-tube” method. The recording solution was 125 mM NaCl, 2 mM CaCl₂, 1.2 mM MgCl₂, 10 mM glucose, 51 mM mannitol, 11.5 mM HEPES, pH 7.4 with NaOH. Nominally Ca²⁺-free solution contained 121.7 mM NaCl, 1.2 mM CaCl₂, 1.2 mM MgCl₂, 2 mM EGTA, 10 mM glucose, 51 mM mannitol, 11.5 mM HEPES, pH 7.4 (90 nM [free-Ca²⁺]).

Cell viability assay

Toxicity of H₂O₂ on cultured neurons and HEK cells was assessed by the trypan blue exclusion method (18). After exposure to drugs in Eagle’s MEM at 37°C for the indicated period, cells were immediately stained with 1.5% Trypan blue for 10 min at room temperature, fixed with ice-cold, isotonic formalin (pH 7.0), and rinsed with physiological saline. The viability of the culture was estimated as the percentage of the ratio of the number of unstained, viable cells to the total number of stained and unstained cells. Over 100 cells per coverslip were counted in determining the viability, and at least 5 coverslips were used for one treatment. Dilution of H₂O₂ was made fresh from 30% solution (Wako, Osaka) just prior to experiments.

siRNA treatment

An siRNA targeted to 168 – 188 base downstream to the start codon ATG of rat TRPM2 was synthesized by Silencer siRNA construction kit (Ambion) with the following primers: 5'-aacaagtcatgagatgcctcctgtctc-3' (for antisense strand) and 5'-aaaggcatctcatggacgtgtcctgtc-3' (for sense strand). Cultured neurons were transfected at 5 – 6 DIV with the siRNA at a concentration ranging 0.1 – 10 nM by Lipofectamine 2000 for 4.5 h in Opti-MEM solution (Invitrogen). As the control, an siRNA to GAPDH was synthesized according to the instructions of the siRNA construction kit and used at a final concentration of 3 nM.

Statistics

Data are shown as the means ± S.E.M.s. Prism 4 (GraphPad, San Diego, CA, USA) was used for ANOVA with the post hoc Tukey test.

Results

Expression of TRPM2 in rat cortical neurons

First we have characterized the neuronal cultures by triple staining for nuclear DNA, a neuronal marker, MAP2, and an astrogial marker, GFAP (Fig. 1a). Most of the large, round cells with thick cell bodies and long extensions were MAP2-positive neurons and consisted of >70% of the total cell number identified by nuclear staining with DAPI. The remaining cells were GFAP-positive astrocytes with flat cell bodies and stellate morphology, whose number was not increased after
treatment with the cytosine arabinoside at 7 DIV. One to two days after transfection with plasmid containing cDNA for EGFP at 5 DIV, green fluorescence was observed in 40.4 ± 6.8% (n = 12) of neurons with long dendrites after 1 – 2 days (Fig. 1b), indicating successful transgene expression in cultured cortical neurons.

Expression of TRPM2 in rat neurons were evaluated using two kinds of anti-TRPM2 antibodies directed against different C-terminal regions of mouse TRPM2. With both antibodies, TRPM2-immunoreactivity was observed in most (>90%), but not all, of the cultured neurons. The staining with anti-TRPM2 antibodies were observed in cell bodies and neurites of neurons (Fig. 2a). In high-magnification images, the TRPM2-immunoreactivity was distributed to plasma membranes and intracellular membraneous particles of MAP2-positive cells (Fig. 2b). The expression of TRPM2 was much lower in premature neurons at 2 – 4 DIV and never colocalized with GFAP-positive cells at any DIV (data not shown).

To confirm the expression of functional TRPM2 channels on the cell surface of neurons, we have recorded the ADPR-induced current response from cortical neurons acutely isolated from young rats (Fig. 2c) since cultured neurons had many neurites and...
cell-to-cell contacts that would interfere with patch-clamp analysis. When the dissociated rat cortical neurons were dialyzed with the pipette solution containing 1 mM ADPR, inward currents developed gradually and reached a peak at 4–6 min in 5 out of 6 neurons, whereas 2 out of 6 neurons showed inward currents in the absence of ADPR. The average of peak inward current amplitudes was 21.3 ± 5.7 pA with ADP-ribose and 5.9 ± 4.1 pA without ADPR (P<0.05) at a holding potential of −60 mV. The inward currents completely disappeared by omission of both Ca²⁺ and Na⁺ from the external solution, whereas addition of 10 mM Ca²⁺ partially restored the currents, suggesting that Ca²⁺-permeable cation channels are opened by intracellular ADPR in cortical neurons.

H₂O₂-induced cell death and Ca²⁺ influx in cultured cortical neurons

Cultured cortical neurons are vulnerable to H₂O₂ and cause cell death after application of H₂O₂ (8, 19, 20). As a first step toward understanding the role of Ca²⁺-permeable TRPM2 in the pathology of H₂O₂ in neurons, we have compared the toxic effects of H₂O₂ on rat cortical neurons in the presence and absence of Ca²⁺, with reference to the excitotoxic effects of glutamate (Glu) via activation of Ca²⁺-permeable NMDA channels (21). Treatment of cultures for 1 h with 500 µM Glu caused significant decrease in the number of living cells as indicated by the increase in the stained neurons in the Trypan blue exclusion assay, which was restored under the Ca²⁺-free condition (Fig. 3). Treatment of cultures with 1 mM H₂O₂ caused prominent neuronal death within 20 min, which was significantly (P<0.01), but not completely, inhibited in the absence of extracellular Ca²⁺, indicating that Ca²⁺ plays substantial role in the H₂O₂-induced neuronal death. Lower concentrations of H₂O₂, requiring longer period of incubation, also caused neuronal death (data not shown). Minimum degenerative concentration of H₂O₂ was 30 µM for 8-h incubation, in which 60.5 ± 5.9% (n = 20) cells were dead, suggesting that cultured cortical neurons are vulnerable to H₂O₂ with equivalent sensitivity of cultured striatal neurons in vitro (22) which are thought to be particularly sensitive to H₂O₂ (23, 24).

To explore the relationship between acute Ca²⁺ influx and neuronal death by H₂O₂, we measured H₂O₂-induced changes in [Ca²⁺], using fura-2 fluorometry. In comparison with the immediate increase in [Ca²⁺], after Glu exposure (Fig. 4a), application of 1 mM H₂O₂ caused a synchronously-bursting increase in [Ca²⁺], after several minutes of delay in Ca²⁺-containing solution (Fig. 4b). The plateau level of F₃₄₀/₃₈₀ ratio after 12-min treatment with Glu and H₂O₂ was 1.29 ± 0.24 (n = 47) and 1.25 ± 0.21 (n = 51), respectively, suggesting that these neurotoxins are equipotent in increasing [Ca²⁺]. Perfusion of neurons for 4 – 5 min with Ca²⁺-free solution per se did not evoke any store-related Ca²⁺ entry in neurons (Fig. 4c), and 5-min perfusion with 1 mM H₂O₂ under Ca²⁺-free condition only elicited a subtle rise in [Ca²⁺] (Fig. 4d). However, re-addition of 2 mM Ca²⁺ in perfusing solution 5 min after washout of H₂O₂ evoked marked and sustained increase in [Ca²⁺], with less delay of onset. The average F₃₄₀/₃₈₀ ratio at 12 min after application of H₂O₂ (2 min after addition of Ca²⁺) was 1.45 ± 0.04 (n = 52). The H₂O₂-induced Ca²⁺ influx was dose-dependent and detectable at a minimum of 30 µM in the Ca²⁺-addition protocol (Fig. 4e). Under this condition, the EC₅₀ and Hill slope values were 546 nM (95% confidential limits = 421 – 709 nM, n = 6 – 10) and 1.7 ±
TRPM2 and H2O2-Induced Neuronal Death 71

0.3, respectively. Pharmacologically, the H2O2-induced Ca2+ influx was not inhibited but rather potentiated (19.7 ± 12.8%, n = 8) in the presence of 1 μM La3+ (Fig. 4f). These results suggest that the increase in [Ca2+]i after H2O2 is largely mediated by Ca2+ influx via H2O2-activated Ca2+-permeable channels and that the insensitivity to La3+ is distinct from the pharmacological sensitivity of La3+-sensitive TRPC or voltage-dependent Ca2+ channels.

Molecular cloning and heterologous expression of rat TRPM2 cDNA

Human (NM_003307) and mouse (NM_138301) TRPM2 genes share 84.2% identity in the deduced amino acid sequences and 82.9% identity in the nucleotide sequences of open reading frame. Although the anti-mouse TRPM2 antibody recognized an immunoreactive substance in rat cortical neurons, we have cloned rat TRPM2 gene from rat brain cDNA library to study the channel function by heterologous expression and to manipulate expression of TRPM2 in cultured neurons by RNA interference (RNAi). In a draft sequence of rat genome (LOC294329), a putative TRPM2 gene was found, and the expression was supported by multiple EST sequences. RT-PCR amplification of cDNAs from both rat brain mRNA and mRNA purified from cultured cortical neurons yielded a 4.6-kb product. The rat TRPM2 gene encoded 1507 amino acids identically to mouse gene and share 94.5% amino acid identity with mouse TRPM2. However, several differences in the deduced amino acid sequences were found within the Nudix box region as compared with those of human and mouse TRPM2 (Fig. 5a). Glu1393 that is conserved among human and mouse TRPM2 and human NUDT9 was Lys in rat TRPM2. Two positively-charged residues of Arg1401 and Arg1404 in human and mouse TRPM2 were replaced to glutamines. These differences raised the possibility of a different mechanism of gating in rat TRPM2-forming channels. In Western analysis of HEK cells transfected with rat TRPM2 cDNA, a single 170-kD band was detected but not in mock-transfected control cells (Fig. 5b), confirming the integrity of cDNA and crossreactivity of anti-mouse TRPM2 antibody to rat TRPM2 protein.

To compare the sensitivities of rat and human TRPM2 channels to ADPR, we recorded whole-cell current responses of HEK cells after heterologous expression of rat or human TRPM2. In cells expressing rat TRPM2, dialyzation with patch pipette solution containing 30 μM ADPR elicited a slow-onset, inward current response at a holding potential of −50 mV (Fig. 5c). The I-V curve of ADPR-induced rat TRPM2 currents was linear with a reversal potential around 0 mV (Fig. 5d), similar to that of human TRPM2 channels. The ADPR-evoked response was reduced by omission of extracellular Ca2+ with EGTA (Fig. 5e), supportive of Ca2+-dependent opening of TRPM2 channels (16, 25). A comparative experiment on the sensitivity to ADPR (Fig. 5f) revealed that the average current density of the rat TRPM2 channel response was significantly (P<0.05) higher than that of human channels at 30 μM ADPR and that the current amplitude or the proportion of responding cells was not different at lower or higher concentrations. These results suggest that rat TRPM2 channels are more sensitive to ADPR than human TRPM2 channels, while other properties are identical.

In a series experiment of fura-2 fluorescence and
Fig. 5. Amino acid sequence and sensitivity of rat TRPM2 channel to ADPR. Multiple alignment of the Nudix motif region of mammalian TRPM2 genes (at amino acids 1382 – 1406 in rat TRPM2) with human NUDT9 indicates several differences in rat TRPM2 in comparison with human and mouse genes (a). A plus (+) symbol indicates a conversion of a negatively-charged residue (red character) to a positively-charged one (blue character), and # symbols indicate loss of positive charges in rat TRPM2. Heterologous expression of rat TRPM2 protein in HEK cells was confirmed by Western blot analysis (b). Typical whole-cell current responses were recorded from HEK cells expressing rat TRPM2 in the presence of 30 µM ADPR in the pipette solution (c). I-V relationship of TRPM2 currents were recorded before (trace 1) and after (trace 2) the delayed activation of TRPM2 channels with intracellular ADPR (100 µM, d). Decrease in the ADPR (100 µM)-induced cation current was observed by removal of extracellular Ca$^{2+}$ with EGTA (e). Difference in the sensitivity to ADPR was compared at different ADPR concentrations between human and rat TRPM2 channels (f).

Fig. 6. Functional expression of rat TRPM2 in HEK cells. a: In the microscopic images in fura-2 fluorescence analysis (left panel), OD$_{340/380}$ ratio 5 min after treatment with 1 mM H$_2$O$_2$ was converted to spectral pseudocolor (middle panel, from violet $= 0$ to red $= 2$). Following the fura-2 measurement, expression of TRP M2 was checked by immunostaining of TRPM2 with DAB (right panel). b: Application of 1 mM H$_2$O$_2$ to mock-transfected HEK cells gave no change in [Ca$^{2+}$], (n = 53), whereas HEK cells transfected with rat TRPM2-carrying plasmid elicited H$_2$O$_2$-induced Ca$^{2+}$ influx (indicated as individual traces from 55 cells). c: Efficacy of heterologous expression of rat TRPM2 in HEK cells are shown in the DAB-stained immunocytochemical image. d: A part of the HEK cells expressing rat TRPM2 died after treatment with 100 µM H$_2$O$_2$ at 37°C for 20 min, while mock-transfected cells were not affected. Scale bar = 50 µm.
subsequent immunostaining of the fura-2-loaded cells, H$_2$O$_2$-induced rise in fluorescence ratio by Ca$^{2+}$ influx was observed in a portion of HEK cells transfected with rat TRPM2 cDNA, and TRPM2 immunoreactivity was detected in the identical population of cells (Fig. 6a). H$_2$O$_2$-induced Ca$^{2+}$ influx was not observed in the mock-transfected HEK cells, while most of TRPM2-transfected cells caused Ca$^{2+}$ influx after stimulation with H$_2$O$_2$ (Fig. 6b). In comparative experiments of immunostaining and H$_2$O$_2$-induced cell death, 42.1 ± 4.6% (n = 8) of TRPM2-transfected HEK cells were immunostained (Fig. 6c), while H$_2$O$_2$-induced cell death was observed in 34.0 ± 2.4% (n = 24) of sister cultures (Fig. 6d). These results indicate that heterologous expression of rat TRPM2 conferred both H$_2$O$_2$-induced Ca$^{2+}$ influx and cell death in HEK cells.

Fig. 7. Specific attenuation of TRPM2 immunoreactivity and H$_2$O$_2$-induced Ca$^{2+}$ influx by siRNA silencing in cultured cortical neurons. a: Representative immunocytochemical DAB staining of neurons pretreated with or without (control) either siRNA for GAPDH (siGAPDH, 3 nM) or TRPM2 (siTRPM2, 1 nM). Scale bar = 50 µm. b: H$_2$O$_2$-induced changes in [Ca$^{2+}$], was measured in fura-2-loaded neurons pretreated with lipofection reagent only (control, n = 45), siGAPDH (n = 27) or siTRPM2 (n = 52). c: Average effects of siGAPDH- and siTRPM2-induced silencing on the number of immune-positive neurons for GAPDH and TRPM2, and the H$_2$O$_2$-induced Ca$^{2+}$ influx. **, P<0.01 vs control by one-way ANOVA with the post hoc Tukey test.
Gene silencing of TRPM2 in cultured cortical neurons

Nucleotide sequence of rat TRPM2 enabled targeted gene silencing of TRPM2 in cultured neurons. We tested several sets of siRNA targeted to specific nucleotide sequences of rat TRPM2 and found that treatment of neuronal culture with one of the siRNAs for TRPM2 (siTRPM2) at 1 nM reduced the intensity of staining and the number of immunoreactive cells after 3–4 days of transfection without affecting GAPDH staining and morphology of neurons (Fig. 7a). Conversely, a control siRNA for GAPDH (siGAPDH) specifically reduced GAPDH signal without a change in TRPM2 staining, although the GAPDH-reduced neurons displayed typically flattened morphology. There was no change in the number of living neurons by either treatment of siRNA. Higher concentration of siTRPM2 was also effective, but non-specific reduction in GAPDH was observed at 3 nM or more (data not shown).

In fura-2 loaded neurons after pretreatment with siTRPM2 or siGAPDH, neither basal [Ca\(^{2+}\)]\(_i\) concentration nor a small rise in [Ca\(^{2+}\)]\(_i\) by H\(_2\)O\(_2\) in Ca\(^{2+}\)-free solution was affected, whereas H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx was greatly suppressed specifically in neurons treated with siTRPM2 (Fig. 7b). On average, treatment with siTRPM2 caused a significant decrease in the number of stained neurons (40.2 \pm 2.7\% of control, n = 23), while the inhibition of H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx was more apparent (15.2\% of control increase, Fig. 7c), implying that H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx is strongly dependent on TRPM2 expressed in neurons.

Finally, H\(_2\)O\(_2\)-induced neuronal death was compared under two representative conditions (Fig. 8). The siTRPM2 pretreatment for 3–4 days did not affect the number of living neurons before the H\(_2\)O\(_2\) treatment. Acute neuronal death by short incubation (20 min) with a high concentration (1 mM) of H\(_2\)O\(_2\) was significantly (P<0.01) rescued by pretreatment of cultures with siTRPM2. In addition, a long exposure (6 h) to a pathologically relevant concentration (50 \(\mu\)M) of H\(_2\)O\(_2\) caused delayed neuronal death, which was also significantly (P<0.01) inhibited in siTRPM2-pretreated neurons.

Discussion

The main finding of the present study is that TRPM2 expressed in rat cortical neurons is critically involved in H\(_2\)O\(_2\)-induced Ca\(^{2+}\) influx that causes neuronal death in vitro. We also cloned rat TRPM2 cDNA from rat brain and characterized as ADPR-gated Ca\(^{2+}\)-permeable channels that confers H\(_2\)O\(_2\)-induced cell death by heterologous expression. The nucleotide sequence of rat TRPM2 enables us to manipulate gene expression by RNAi. These findings shed new light on the cascade from the generation of ROS to the degenerative neuronal death.

Overproduction of H\(_2\)O\(_2\) molecules in mitochondria contributes to the pathogenesis of many neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and cerebral ischemia (1, 5, 26). In case of ischemic insult and subsequent reperfusion, concentration of free H\(_2\)O\(_2\) in the brain reaches to approximately 100 \(\mu\)M (24), at which H\(_2\)O\(_2\) exerts neurotoxic actions on striatal and cortical neurons in vitro (7, 24). The neuronal death by a pathologically relevant concentration of H\(_2\)O\(_2\) indicates characteristics of apoptosis with nuclear condensation and DNA laddering (8). However, decrease in ATP level changes the apoptotic cell death to necrotic nature (27). Moreover, H\(_2\)O\(_2\) at higher concentrations cause acute necrosis of neural cells (9). Therefore the H\(_2\)O\(_2\)-induced neuronal death may involve multiple processes leading to apoptotic and necrotic degeneration, depending on the intensity of stimuli, time of exposure, and the cellular environments. In the present study, gene silencing of neuronal TRPM2 was similarly effective to suppress the delayed death by low
concentration of H$_2$O$_2$ (50 μM) and the acute death by high concentration of H$_2$O$_2$ (1 mM). These results suggest the pivotal role of TRPM2 channels in the cell death pathway downstream of H$_2$O$_2$ action.

The primary effects of H$_2$O$_2$ may include the oxidation of proteins, such as glutathione, peroxidation of membrane lipids, and breakage and/or base modification of DNA strand (26). In addition, hydroxyl radicals are produced via the Fenton reaction in presence of free Fe$^{2+}$, which strongly promotes DNA damage. The DNA damage activates the DNA repair enzyme PARP, of which overactivation is considered to be involved in the cell death by oxidative stress (28, 29). Although the mechanism by which PARP activation leads to cell death appears linked to the rapid utilization of NAD$^+$ during formation of poly-ADPR, recent evidence suggests an important role of poly-ADPR glycohydrolase (PARG) that hydrolyzes poly-ADPR into free ADPR molecules in the oxidative and excitotoxic neuronal death (30). Since inhibitors of PARP prevents H$_2$O$_2$-induced opening of TRPM2 channels without affecting direct action of ADPR on TRPM2 channels (31), ADPR may be produced via the PARP – poly-ADPR – PARG pathway in neurons in response to the DNA damage by H$_2$O$_2$ or hydroxyl radicals. Alternatively, ADPR can be produced from NAD$^+$ directly or via cyclic ADPR by catalytic actions of CD38 expressed in neurons and astrocytes (32). This process is also upregulated by nitric oxide via the cyclic GMP pathway (33). Although the detailed mechanism by which ADPR is produced in neurons is unclear, the activation of TRPM2 channels by ADPR leads to irreversible depolarization and unregulated Ca$^{2+}$ entry followed by neuronal death (6, 11). We could not exclude the role of glutamate release and subsequent NMDA receptor activation in the H$_2$O$_2$-induced neuronal death, as previously proposed (20). However, heterologous expression of rat TRPM2 is sufficient to induce H$_2$O$_2$-induced cell death in HEK cells in which NMDA receptors are not expressed. Considering that cortical neurons also have TRPM7 whose activity is regulated specifically by reactive nitrogen species, such as nitric oxide, and also by H$_2$O$_2$ (12), the survival of neurons are differentially or synergistically regulated or threatened, by two TRPM channel-involving systems.

There are several amino acid differences in the Nudix box region of rat TRPM2, as compared to those of human and mouse clones. Based on the structural and mutational analysis of the human NUDT9 molecule that hydrolyzes ADPR (34) with human TRPM2 (35), double mutation from E230 to T231 of NUDT9 to I1404 L1406 of human TRPM2 (equivalent to V1402 L1403 of rat TRPM2) causes a decrease in ADPRase activity. Accordingly, it is supposed that the prolonged binding of ADPR, rather than degradation by hydrolysis, is required for the TRPM2 channel opening. Therefore, neighboring double mutations of Arg to Gln at amino acids 1401 and 1404 in rat TRPM2 may be responsible for the higher affinity of rat TRPM2 channels to ADPR by reduced ADPRase activity. The delayed onset of the ADPR-induced TRPM2 channel currents as well as its dependency on extracellular Ca$^{2+}$ concentration suggest the requirement of a rise in [Ca$^{2+}$]i, for the opening of rat TRPM2 channels, as shown in human and mouse recombinant channels (13) and in H$_2$O$_2$-induced Ca$^{2+}$ increase in striatal neurons (10). Delayed onset of H$_2$O$_2$-induced Ca$^{2+}$ influx in neurons may involve both metabolic processes producing ADPR and the rise in intracellular Ca$^{2+}$ required for the activation of TRPM2 channels.

In summary, we demonstrate that TRPM2 is abundantly expressed in neurons and plays an important role in the regulation of neuronal survival as well as intracellular Ca$^{2+}$ homeostasis. Since TRPM2 is expressed in neurite extensions as well as cell bodies, TRPM2 may have physiological roles in the synaptic transmission or neurite extension signals by regulating Ca$^{2+}$ and Na$^+$ entry depending on the cellular redox states. Under pathological conditions, excessive generation of H$_2$O$_2$ may cause excess Ca$^{2+}$ entry via TRPM2 channels in addition to other direct actions of H$_2$O$_2$ on proteins, lipids, and DNA, while the TRPM2-mediated Ca$^{2+}$ overload is a critical determinant of H$_2$O$_2$-mediated neuronal death. Thus prevention of Ca$^{2+}$ influx via TRPM2 channels may be effective in rescuing neurons from oxidative stress in vivo. Further research and development of agents that are specifically targeted to the TRPM2 channel may provide a future therapeutic approach for progressive neurodegenerative diseases.

Acknowledgments

This work was supported by Grants-in-Aid from MEXT, Sankyo Foundation of Life Science and Takeda Science Foundation, and by 21st Century COE Program ‘Knowledge Information Infrastructure for Genome Science’.

References

3 Abramov AY, Canevari L, Duchen MR. β-Amyloid peptides induce mitochondrial dysfunction and oxidative stress in astro-