Glucocorticoids Ameliorate Antigen-Induced Bronchial Smooth Muscle Hyperresponsiveness by Inhibiting Upregulation of RhoA in Rats

Yoshihiko Chiba¹,*, Kumiko Goto¹, Mayu Hirahara¹, Hiroyasu Sakai¹, and Miwa Misawa¹

¹Department of Pharmacology, School of Pharmacy, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan

Received October 19, 2007; Accepted February 16, 2008

Abstract. To determine the mechanism(s) of the inhibitory effect of glucocorticoids on airway hyperresponsiveness in allergic bronchial asthma, the effects of systemic treatment with glucocorticoids on bronchial smooth muscle hyperresponsiveness and RhoA upregulation were investigated in rats with allergic bronchial asthma. Rats were sensitized and repeatedly challenged with 2,4-dinitrophenylated Ascaris suum antigen. Animals were also treated with prednisolone or beclomethasone (each 10 mg/kg, i.p.) once a day during the antigen inhalation period. Repeated antigen inhalation caused a marked bronchial smooth muscle hyperresponsiveness to acetylcholine with an upregulation of RhoA. Augmented acetylcholine-induced activation of RhoA and phosphorylation of myosin light chain were observed in bronchial smooth muscles of the antigen-exposed animals. Systemic treatment with either glucocorticoid used inhibited the bronchial smooth muscle hypercontraction until the level of the sensitized control rats that received saline inhalation instead of antigen challenge. Interestingly, both glucocorticoids also inhibited the upregulation of RhoA and augmented acetylcholine-induced activation of RhoA and phosphorylation of myosin light chain. In conclusion, glucocorticoids ameliorated the augmented bronchial smooth muscle contraction by inhibiting upregulation of RhoA. These effects of glucocorticoids may account for, in part, their beneficial effects in the treatment of asthma.

Keywords: airway hyperresponsiveness, bronchial smooth muscle, RhoA, prednisolone, beclomethasone

Introduction

Increased airway narrowing in response to non-specific stimuli is a characteristic feature of human obstructive diseases, including bronchial asthma. This abnormality is an important symptom of the disease, although the pathophysiological variations leading to the hyperresponsiveness are unclear now. Several mechanisms have been suggested to explain the airway hyperresponsiveness (AHR) such as alterations in the neural control of airway smooth muscle (1), increased mucosal secretions (2), and mechanical factors related to remodeling of the airways (3). In addition, it has also been suggested that one of the factors that contribute to the exaggerated airway narrowing in asthmatics is an abnormality of the nature of airway smooth muscle (4, 5). Rapid relief from airway limitation in asthmatic patients by β-stimulant inhalation may also suggest an involvement of augmented airway smooth muscle contraction in the airway obstruction. Thus, it may be important for development of asthma therapy to understand changes in the contractile signaling of airway smooth muscle cells associated with the disease.

Smooth muscle contraction is mainly regulated by an increase in cytosolic Ca²⁺ concentration in myocytes. Recently, an additional mechanism, termed Ca²⁺ sensitization, has also been suggested in the agonist-induced smooth muscle contraction including airways (6 – 12). Although the detailed mechanism is not fully understood, there is increasing evidence that a monomeric guanosine 5’-triphosphate (GTP)-binding protein RhoA and its downstream target Rho-kinase are involved in the agonist-induced Ca²⁺ sensitization of airway smooth muscle contraction (6, 7, 9, 10). When the RhoA/Rho-kinase system was activated by contractile agonists, the activity of myosin light chain (MLC) phosphatase is
reduced and the level of phosphorylated MLC is then increased, resulting in an augmentation of smooth muscle contraction. Recent studies revealed an augmentation of the RhoA/Rho-kinase-mediated Ca²⁺ sensitization in diseased smooth muscles such as coronary (13–15) and cerebral vasospasms (16–18) and hypertension (19–21). In addition, our previous studies demonstrated that the agonist-induced, RhoA-mediated Ca²⁺ sensitization of bronchial smooth muscle contraction is augmented in rats (7) and mice (10) with allergic bronchial asthma. It is thus possible that an augmentation of the RhoA/Rho-kinase system might be one of the causes of the bronchial smooth muscle hyperresponsiveness.

Glucocorticoids are the most effective therapy currently available for the treatment of allergic bronchial asthma. It has been believed that glucocorticoids act primarily as anti-inflammatory agents, that is, inhibition of recruitment of inflammatory cells and inhibition of release of pro-inflammatory mediators such as cytokines, in asthmatics (22). Recent studies have also demonstrated that glucocorticoids may affect diverse functions of airway smooth muscles (23, 24), which also express the glucocorticoid receptors (25). Moreover, clinical studies revealed that glucocorticoids could reduce, at least in part, the AHR (26–29). However, little is known about the action of glucocorticoids on the function of airway smooth muscle and on the pathogenesis of bronchial smooth muscle hyperresponsiveness.

In the present study, to determine whether glucocorticoids can reduce the bronchial smooth muscle hyperresponsiveness associated with AHR, the effects of prednisolone and beclomethasone on the augmented bronchial smooth muscle contraction were investigated in rats with allergic bronchial asthma (7, 11). Furthermore, the effects of both agents on the increased expression of RhoA in bronchial smooth muscles of the AHR rats were also studied.

Materials and Methods

Animals and treatments

Male Wistar rats (6 weeks of age, specific pathogen-free, 170–190 g; Charles River Japan, Inc., Kanagawa) were used. All experiments were approved by the Animal Care Committee at the Hoshi University (Tokyo).

Rats were sensitized and repeatedly challenged with 2,4-dinitrophenylated Ascaris suum antigen (DNP-Asc) by the method described in the previous papers (7, 11, 30). In brief, the rats were sensitized with DNP-Asc together with Bordetella pertussis and were boosted 5 days later. Eight days after the first immunization, the rats were challenged by inhaling DNP-Asc for 40 min under conscious state. The animals were subjected to a total of three antigen challenges, spaced 48-h apart. The sensitized control animals received the same immunization procedure but inhaled saline aerosol instead of antigen challenge. Animals also received intraperitoneal injection with prednisolone (10 mg/kg, dissolved in 16 mM Na₂CO₃-saline; Wako, Osaka), beclomethasone (10 mg/kg, dissolved in 40% dimethyl sulfoxide (DMSO)-10% Tween 80-saline; MP Biomedicals, Inc., Solon, OH, USA) or either vehicle daily for 5 days from the day of the first antigen challenge. The treatment was carried out 1 h before the antigen inhalation on each day of antigen challenge.

Functional study on bronchial smooth muscles

To determine the change in bronchial smooth muscle contractility, the isometric contraction of the circular smooth muscle of the main bronchus, defined as bronchial smooth muscle, was measured as described previously (7, 11, 12, 30). In brief, 24 h after the last antigen challenge, the rats were sacrificed by exsanguinations from abdominal aorta under chloral hydrate (400 mg/kg, i.p.) anesthesia. Then the airway tissues below the larynx to lungs were immediately removed. About 4-mm length (3-mm diameter) of the left main bronchus was isolated (8–9 cartilages) and the resultant tissue ring preparation was then suspended in an organ bath at a resting tension of 1 g. The organ bath contained modified Krebs-Henseleit solution with the following composition: 118.0 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl₂, 1.2 mM MgSO₄, 25.0 mM NaHCO₃, 1.2 mM KH₂PO₄, and 10.0 mM glucose (pH 7.4). The isometric contraction of the circular smooth muscle was measured with a force-displacement transducer (TB-612T, Nihon Kohden, Tokyo). During an equilibration period, the tissues were washed three or four times at 15–20-min intervals and were equilibrated slowly to a baseline tension of 1 g. After the equilibration period, the concentration-response curve to acetylcholine (ACh, 10⁻⁷–10⁻¹ M in final concentration) was constructed cumulatively. A higher concentration of ACh was successively added after attainment of a plateau response to the previous concentration. In another series of experiments, isotonic K⁺ solution (10–90 mM in final concentration) was cumulatively administered in the presence of atropine and indomethacin (both 10⁻⁶ M) to determine the bronchial smooth muscle responsiveness to high K⁺-depolarization.

Western blot analyses

Protein samples of bronchial tissues were prepared as previously described (7, 11, 12, 30). In brief, the airway tissues below the main bronchi to lungs were removed.
and immediately soaked in ice-cold, oxygenated Krebs-Henseleit solution. The airways were carefully cleaned of adhering connective tissues, blood vessels and lung parenchyma under a stereomicroscopy. The epithelium was removed as much as possible by gently rubbing with keen-edged tweezers: histological examinations revealed that almost all the cells other than bronchial smooth muscle cells and cartilages were removed by this process (7, 11, 12, 30). The resultant bronchial tissues were defined as “bronchial smooth muscles” in this manuscript. Then the bronchial tissue (containing the main and intrapulmonary bronchi) segments were quickly frozen with liquid nitrogen, and the tissue was crushed to pieces by a Cryo pressTM (15 s × 3) (CP-100W; Microtec, Co., Ltd., Chiba). The tissue powder was homogenized in ice-cold T-PERTM Tissue Protein Extraction Reagent (Pierce, Rockford, IL, USA) containing 5 μM 4-(2-aminoethyl) benzenesulfonyl fluoride (AEBSF), 1.5 mM apro tinin, 10 mM (25,35)-3-[N-(S)-1, [N-(4-guan dinobutyl) carbamoyl]-3-methylbutyl] carbamoyl) oxirane-2-carboxylic acid (E-64), 5 μM ethylenedi aminetetraacetic acid (EDTA), and 10 mM leupeptin. The tissue homogenate was then centrifuged (3,000 × g, 4°C, for 15 min) and the resultant supernatant was stored at −85°C until use.

To determine the levels of RhoA, MLC, phosphorylated MLC (phospho-MLC), smooth muscle α-actin, MLC kinase (MLCK), Rho-associated coiled-coil forming protein kinase-I (ROCK-I) and ROCK-II proteins in bronchial smooth muscles, the samples (10 μg of total protein per lane) were subjected to 7.5% or 15% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), and the proteins were then electrophoretically transferred to a poly(vinylidene fluoride) (PVDF) membrane. After blocking with 3% gelatin, the PVDF membrane was incubated with polyclonal rabbit anti-RhoA antibody (1:2,500 dilution; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), anti-MLC (1:2,500 dilution; Santa Cruz Biotechnology, Inc.), anti-phospho-MLC (1:1,000 dilution; Santa Cruz Biotechnology, Inc.), anti-MLCK (1:1,000 dilution; Santa Cruz Biotechnology, Inc.), goat anti-ROCK-I (1:1,000 dilution; Santa Cruz Biotechnology, Inc.), anti-ROCK-II (1:1,000 dilution; Santa Cruz Biotechnology, Inc.), or monoclonal mouse anti-α-actin (1:5,000 dilution; Sigma, St. Louis, MO, USA) antibody. Then the membrane was incubated with horseradish peroxidase–conjugated donkey anti-rabbit immunoglobulin G (IgG), donkey anti-goat IgG, or sheep anti-mouse IgG (1:2,500 dilution; Amershams Biosciences, Co., Piscataway, NJ, USA); detected by an enhanced chemiluminescent system (Amershams Biosciences, Co.); and analyzed by a densitometry system. Detection of house-keeping gene was also performed on the same membrane by using monoclonal mouse anti-β-actin antibody (1:5,000 dilution; Santa Cruz Biotechnology, Inc.) to confirm that the same amount of each protein was loaded.

Reverse transcription-polymerase chain reactions (RT-PCR)

The semi-quantitative analyses of mRNA levels of RhoA were examined by RT-PCR. Briefly, total RNA was isolated from an aliquot of the tissue powder as described above with a one-step guanidium-phenol-chloroform extraction procedure using TRI ReagentTM (Sigma). cDNAs were prepared from the total RNA (1.0 μg) by using a RevertAid First Strand cDNA Synthesis Kit (Fermentas, Inc., Hanover, MD, USA) in a total volume of 50 μl reaction buffer containing 50 mM Tris-HCl (pH 8.3), 50 mM KCl, 4 mM MgCl2, 1 mM dNTP mixture, 1 U/μl RNase inhibitor, 10 ng/μl random 6mers, and 10 U/μl M-MuLV reverse transcriptase. The reaction mixture was incubated for 10 min at 25°C followed by 60 min at 42°C to initiate the synthesis of cDNAs. Reverse transcriptase was inactivated at 70°C for 5 min. Then the RT reaction mixture (4 μl) was subjected to PCR (0.1 μM forward and reverse primers, 0.025 U/1 Taq DNA polymerase, 2 mM MgCl2, 0.2 mM dNTPs) in a final volume of 20 μl. The PCR primer sets used were as follows: 5’-TGGTGATTGT TGGTGATGGAGC-3’ (sense) and 5’-CAGGATGA TGGGCACATTG-3’ (antisense) for RhoA, 5’- CCATCACGCAACTCAAGAC-3’ (sense) and 5’- TACTCCCTGAGCCATGAG-3’ (antisense) for glycereraldehyde-3-phosphate dehydrogenase (GAPDH), which were designed from published sequences (Accession No. NM_057132 and NM_017008, respectively). The thermal cycle profile used was 1) denaturing for 30 s at 95°C, 2) annealing primers for 30 s at 60°C, and 3) extending the primers for 60 s at 72°C. The PCR amplification was performed at 30 cycles according to the preliminary cycle dependence experiment. The PCR products were subjected to electrophoresis on a 1.2% agarose gel and visualized by ethidium bromide staining. The band intensity was quantified by a densitometer (Atto Densitograph; Atto Co., Tokyo). The ratio of the RhoA/GAPDH was calculated for the relative expression of RhoA mRNA.

Determination of active form of RhoA

The active form of RhoA, GTP-bound RhoA, in bronchial smooth muscles was measured by RhoA pull down assay as described previously (10). In brief, bronchial tissues containing the main and intrapulmonary bronchi were isolated as described above. The isolated bronchial tissues were equilibrated in oxi-
Y Chiba et al

Equilibrated Krebs-Henseleit solution at 37°C for 1 h. After the equilibration period, the tissues were stimulated by ACh (10⁻³ M for 10 min) and were quickly frozen with liquid nitrogen. The tissues were then lysed in lysis buffer with the following composition: 25.0 mM 2-[4-(2-hydroxyethyl)-1-piperadinyl] ethanesulfonic acid (HEPES) (pH 7.5), 150 mM NaCl, 1% IGEPAL CA-630, 10.0 mM MgCl₂, 1.0 mM EDTA, 10% glycerol, 25.0 mM NaF, 1.0 mM sodium orthovanadate, and peptidase inhibitors. Active RhoA in tissue lysates (200 µg protein) was precipitated with 25 µg glutathione S-transferase (GST)-tagged Rho binding domain (amino acids residues 7 – 89 of mouse rhotekin; Upstate, Lake Placid, NY, USA), which was expressed in Escherichia coli and bound to glutathione-agarose beads. The precipitates were washed three times in lysis buffer; and after adding the SDS loading buffer and boiling for 5 min, the bound proteins were resolved in 15% polyacrylamide gels, transferred to nitrocellulose membranes, and immunoblotted with anti-RhoA antibody as described above.

Statistical analyses

All the data were expressed as the mean with S.E.M. Statistical significance of difference was determined by the unpaired Student’s t-test or two-way analysis of variance (ANOVA) with post hoc Bonferroni/Dunn test (StatView for Macintosh ver. 5.0; SAS Institute, Inc., Cary, NC, USA). A value of \(P < 0.05 \) was considered significant.

Results

Bronchial smooth muscle hyperresponsiveness after repeated antigen exposure

Figure 1a shows the ACh responsiveness of bronchial smooth muscles isolated from sensitized control and repeatedly antigen-challenged rats. Application of ACh (10⁻⁷ – 10⁻³ M) to isolated bronchial smooth muscles elicited a concentration-dependent contraction in all animals used. The contractile response to ACh of bronchial smooth muscles from the repeatedly antigen-challenged rats was markedly augmented as compared to that from the sensitized control animals: the ACh concentration-response curve was significantly shifted upward by the antigen exposure (\(P < 0.05 \)). On the other hand, no significant difference in the contractile response induced by high K⁺-depolarization was observed between groups (Fig. 1d). These findings are consistent with our previous reports (7, 11, 31) that demonstrate an augmented agonist-induced Ca²⁺ sensitization of contraction in the repeatedly antigen-challenged rats.

Effects of glucocorticoids on the bronchial smooth muscle hyperresponsiveness induced by repeated antigen exposure

To determine the effect of systemic treatment with glucocorticoid on the augmented bronchial smooth muscle responsiveness observed in the repeatedly antigen-challenged rats, animals also received intraperitoneal injection with prednisolone, beclomethasone (each 10 mg/kg), or the respective vehicles during the period...
Steroids Inhibit BSM Hyperreactivity

of repeated antigen exposure. As shown in Fig. 1b, the bronchial smooth muscle hyperresponsiveness to ACh induced by antigen challenge was markedly attenuated by the treatment with prednisolone: the ACh concentration-response curve of the prednisolone-treated group (P-AC) was significantly shifted downward as compared with that of the vehicle-treated one (VP-AC, P < 0.05). In addition, the bronchial smooth muscle responsiveness to ACh of the antigen-challenged rats returned to normal level by the treatment with prednisolone: no significant difference was observed when compared with the sensitized control group (P-AC vs SC in Fig. 1b). Similar results were also observed when beclomethasone was used instead of prednisolone (Fig. 1: c and f). Both prednisolone and beclomethasone had no effect on the bronchial smooth muscle responsiveness of the sensitized control animals (data not shown).

Effects of glucocorticoids on the upregulation of RhoA in bronchial smooth muscles induced by repeated antigen exposure

The expressions of RhoA protein and mRNA were assessed in the main and intrapulmonary bronchial smooth muscles without epithelia and lung parenchyma (7, 11, 12, 30). As reported previously, the expression of RhoA protein in bronchial smooth muscle of the repeatedly antigen-challenged rats was markedly and significantly increased as compared with that of the sensitized control group (Fig. 2a; SC vs AC, P < 0.001). The increased expression of RhoA induced by antigen challenge was significantly inhibited by pretreatment with prednisolone (a; P-AC) or beclomethasone (b; B-AC) when compared with the respective vehicle-treated groups, VP-AC (a) and VB-AC (b). **P < 0.01 and ***P < 0.001 vs SC, ###P < 0.001 vs VP-AC (a), and *P < 0.05 vs VB-AC (b) by two-way ANOVA with post hoc Bonferroni/Dunn test.
RT-PCR analyses because the RhoA protein expression was not affected by vehicle for prednisolone and vehicle for beclomethasone (Fig. 2).

Effects of glucocorticoids on the augmented ACh-induced activation of RhoA and phosphorylation of MLC in bronchial smooth muscles of airway hyperresponsive rats

Figure 5a shows the results of RhoA pull down analyses. Representative blots for the GTP-bound active form of RhoA (GTP-RhoA) and inputted total RhoA protein are shown. ACh stimulation (10⁻³ M, for 10 min) elicited an increase in GTP-RhoA in bronchial smooth muscle of the sensitized control rats (Fig. 5a, SC group): about 2-fold increase in GTP-RhoA from the basal level (no ACh stimulation) was observed. In the repeatedly antigen-challenged animals that also received treatments with vehicle for prednisolone (VP-AC group), a marked increase in GTP-RhoA was observed when smooth muscles were stimulated with ACh. The increased levels of GTP-RhoA in ACh-stimulated bronchial smooth muscles of the antigen-exposed animals were distinctly inhibited by the treatments with prednisolone (P-AC group).

Figure 5b shows the representative immunoblots for MLC and phosphorylated MLC (phospho-MLC) in bronchial smooth muscles. ACh stimulation (10⁻³ M, for 10 min) also elicited increases in phospho-MLC in all bronchial smooth muscle tissues used. A marked increase in the level of phospho-MLC was observed when smooth muscles were stimulated with ACh. The increment of phospho-MLC was obviously attenuated by the treatments with prednisolone (P-AC group).

Similar results of changes in the levels of GTP-RhoA and phospho-MLC were also obtained when beclomethasone was used instead of prednisolone (Fig. 6). Surprisingly, the expression of MLC (total MLC) was markedly increased by the treatments with glucocorticoids, prednisolone (Fig. 5, P-AC) and beclomethasone (Fig. 6, B-AC).

Effects of repeated antigen exposure and glucocorticoids on the expression of contractile proteins in rat bronchial smooth muscle

Figure 7 shows the representative immunoblots for ROCK-I, ROCK-II, MLCK, MLC, and α-smooth muscle actin (α-actin) in bronchial smooth muscles of rats. The relative expression of these proteins were...
calculated and summarized in Table 1. The repeated antigen challenge had no effect on the expression of these proteins studied: in each protein, no significant difference was observed between the sensitized control and the repeatedly antigen-challenged groups. Likewise, the prednisolone treatments (P-AC group) also had no effect on the expression of these proteins except for MLC when compared with its vehicle-treated (VP-AC) group. As mentioned above, the protein expression of MLC was markedly and significantly increased by the treatments with prednisolone (P<0.05 vs vehicle-treated group). Similar results were also obtained when beclomethasone was used instead of prednisolone (data not shown).

Discussion

Glucocorticoids, either inhaled or systemically delivered, are the most effective medication currently available for the control of asthma and are widely recommended as the first-line treatment for this disease (32, 33). A regular use of glucocorticoids has been shown to markedly reduce the mortality and morbidity of asthma (34, 35). It has been believed that the anti-asthmatic effect of glucocorticoids is primarily based on their anti-inflammatory effects. In addition, glucocorticoids can reduce AHR in asthmatics (26 – 29), although little is known about the mechanism(s) of their inhibitory effects on the AHR. Here, we propose a new insight that glucocorticoids might inhibit the AHR by reducing the protein expression and activation of a monomeric GTP-binding protein, RhoA, which is involved in agonist-induced Ca^{2+} sensitization of bronchial smooth muscle contraction.

The AHR is a common feature and a critical component in allergic bronchial asthma. The importance of AHR in the pathogenesis of bronchial asthma has been suggested by its correlation with the severity of this
disease (36–38). In addition, the airways of asthmatics are characterized by an inflammation with marked eosinophilia. An importance of eosinophils in the pathogenesis of the AHR has also been suggested since the increase in number of eosinophils correlates well with an increase in airway responsiveness (38–40). Interleukin-5 (IL-5) is one of the central mediators in the regulation of eosinophilic airway inflammation (41). However, the recent clinical trials of application of humanized monoclonal anti-IL-5 antibody to patients with asthma revealed a reduction in eosinophilia but not in AHR (42, 43). In contrast, clinical studies showed that inhaled or oral glucocorticoid treatment reduced both the numbers of airway eosinophils and AHR (26–29, 44, 45). Similar results have also been reported in murine models of allergic bronchial asthma (46, 47). These findings suggest the dissociation between eosinophilic airway inflammation and the AHR induced by allergen and that the inhibitory effect of glucocorticoids on the AHR does not appear to be explained simply by their inhibitory effect on eosinophilic inflammation.

It has been suggested that one of the factors that contribute to the AHR in asthmatics is an abnormality of the nature of airway smooth muscle (4, 5). The airway smooth muscle is the main structure of airway walls and plays a major role in the contraction of the airways. The excessive contraction of airway smooth muscles may be one of the crucial factors that directly cause the asthma symptoms such as the AHR. Currently, an increased responsiveness of the isolated bronchial smooth muscle to ACh was observed in rats that were sensitized and repeatedly challenged with antigen (Fig. 1a). This observation is consistent with our previous reports (7, 11, 31, 48, 49), indicating that reproducible bronchial smooth muscle hyperresponsiveness has occurred by the procedure used. In this rat with allergic bronchial asthma, an augmented agonist-induced, RhoA-mediated Ca2+ sensitization of bronchial smooth muscle contraction accompanied with an upregulation of RhoA protein has been demonstrated (7). The importance of RhoA and its downstream Rho-kinases (ROCK-I and ROCK-II) in contraction of human bronchial smooth muscle was also demonstrated (6), and the RhoA/Rho-kinase pathway has now been proposed as a new target for the treatment of AHR in asthma (50).

In the present study, effects of systemic treatment with glucocorticoids, prednisolone and beclomethasone, on the bronchial smooth muscle hyperresponsiveness

\begin{table}[h]
\centering
\caption{Effects of repeated antigen exposure and prednisolone on the expression of contractile proteins, ROCK-I, ROCK-II, MLCK, MLC, and \(\alpha \)-actin, in bronchial smooth muscles of rats}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Group & n & ROCK-I & ROCK-II & MLCK & MLC & \(\alpha \)-actin \\
\hline
SC & 6 & 1.01 ± 0.12 & 1.00 ± 0.18 & 1.00 ± 0.27 & 1.00 ± 0.28 & 1.00 ± 0.07 \\
AC & 6 & 1.26 ± 0.18 & 0.81 ± 0.07 & 0.91 ± 0.17 & 1.11 ± 0.26 & 1.01 ± 0.08 \\
VP-AC & 6 & 1.13 ± 0.14 & 0.81 ± 0.26 & 0.74 ± 0.33 & 1.00 ± 0.33 & 0.90 ± 0.06 \\
P-AC & 6 & 1.54 ± 0.23 & 1.21 ± 0.13 & 1.46 ± 0.20 & 9.43 ± 1.21* & 1.02 ± 0.27 \\
\hline
\end{tabular}
\end{table}

SC: sensitized control group, AC: repeatedly antigen challenged group. Some of the AC animals were also pretreated intraperitoneally either with prednisolone (P: 10 mg/kg) or with vehicle for prednisolone (VP: 16 mM Na\textsubscript{2}CO\textsubscript{3} in saline), i.e., P-AC and VP-AC groups, as described in the Methods section. Data are expressed as the fold increase from the SC group. Each value represents a mean ± S.E.M. *\(P < 0.05 \) vs VP-AC by unpaired Student’s \(t \)-test.
Steroids Inhibit BSM Hyperreactivity

and an upregulation of RhoA protein induced by repeated antigen exposure were determined. The dosages of glucocorticoids used were chosen based on the report that prednisolone completely inhibited IL-5-induced airway eosinophilia in rats (51). Our preliminary histological studies also revealed that both prednisolone and beclomethasone, given by the same protocol as the present study, inhibited almost completely the lung eosinophilia induced by repeated antigen exposure (data not shown). Under these conditions, both glucocorticoids abolished the exaggerated bronchial smooth muscle contraction to ACh (Fig. 1) and the upregulation of RhoA protein observed in the repeatedly antigen-challenged rats (Fig. 2). Although the mechanism of action of glucocorticoids on the RhoA expression is not known here, the results of RT-PCR analyses (Figs. 3 and 4) also suggest their inhibitory effect on the transcription level at least in part. To date, the transcription factor(s) involved in the RhoA expression in bronchial smooth muscle is unclear now, but it has been suggested that proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) induce airway smooth muscle cell hyperresponsiveness to contractile agonists directly (52). In addition, our previous studies revealed that TNF-α has an ability to increase RhoA expression in bronchial smooth muscle (53, 54). TNF-α is known to increase the expression of several genes via activation of transcription factors, nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), in airway smooth muscle (55). Both NF-κB and AP-1 are activated in the airways of asthmatic patients and animals (56, 57). Although the exact RhoA promoter and/or enhancer regions have not yet been identified, the transcriptional start site of rat RhoA was identified by 5′-RACE (our personal communication). The DNA sequence analysis for the directly upstream region of the rat RhoA transcriptional start site (from −1 to −3901) using the TFSEARCH program (http://mbs.cbrc.jp/research/db/TFSEARCH.html) revealed 5 and 10 putative binding sites for NF-κB and AP-1 with 80.0 threshold scores, respectively. It is thus possible that antigen challenge causes the activation of NF-κB and AP-1 in bronchial smooth muscle, resulting in an increased RhoA transcription: glucocorticoids might exert their inhibitory effect on RhoA expression through inhibition of NF-κB and AP-1 in bronchial smooth muscle, resulting in an increased RhoA transcription. Interestingly, both the activation of RhoA and the phosphorylation of MLC induced by ACh were markedly augmented in bronchial smooth muscles of the repeatedly antigen-challenged rats as compared with those of the sensitized control animals (Figs. 5 and 6). In contrast, the protein expression of MLCK, a Ca2+-calmodulin-dependent protein kinase that specifically phosphorylates MLC, and MLC itself were not changed in the antigen-challenged group (Fig. 7, Table 1), suggesting that the augmented ACh-induced phosphorylation of MLC is not mediated by a Ca2+-dependent but by a Ca2+-independent, Ca2+-sensitizing mechanism(s) such as the RhoA/Rho-kinase pathway, probably via the upregulated RhoA proteins. In the present study, both prednisolone and beclomethasone also reduced the augmented ACh-induced activation of RhoA and phosphorylation of MLC observed in the antigen-challenged group (Figs. 5 and 6). These effects may be due to their inhibitory effect on RhoA protein expression: the reduced expression of RhoA decreases the relative quantity of the active form of RhoA, resulting in a reduction of MLC phosphorylation and contraction. Surprisingly, the current study also revealed an upregulation of MLC protein by the systemic treatment with glucocorticoids (Figs. 5b, 6b, and 7 and Table 1). However, it is unlikely that the increased MLC protein is involved in the level of phosphorylated MLC and the contraction: the MLC phosphorylation induced by ACh (Figs. 5b and 6b) and the contraction induced by ACh and high K+ depolarization (Fig. 1) were the same as the control levels even in bronchial smooth muscles of the animals treated with glucocorticoids. These discrepancies should be solved in the future.
In conclusion, the current study suggests that glucocorticoids inhibit the upregulation of RhoA and the agonist-induced activation of RhoA and phosphorylation of MLC in bronchial smooth muscles, resulting in a reduction of the augmented contraction induced by antigen exposure. These inhibitory effects of glucocorticoids may account for, in part, their beneficial effects in the treatment of allergic bronchial asthma.

Acknowledgments

We thank Ms. Michiko Todoroki and Ms. Azusa Nagato for their technical assistance.

References

