Two Non-steroidal Anti-inflammatory Drugs, Niflumic Acid and Diclofenac, Inhibit the Human Glutamate Transporter EAAT1 Through Different Mechanisms

Kanako Takahashi1,2, Reiko Ishii-Nozawa1, Kouichi Takeuchi1, Ken Nakazawa2, and Kaoru Sato2,*

1Department of Clinical Pharmacology, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose, Tokyo 204-8588, Japan
2Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan

Received September 17, 2009; Accepted November 14, 2009

Abstract. We investigated the effects of non-steroidal anti-inflammatory drugs on substrate-induced currents of L-glutamate (L-Glu) transporter EAAT1 expressed in Xenopus laevis oocytes. Niflumic acid (NFA) and diclofenac inhibited L-Glu-induced current through EAAT1 in a non-competitive manner. NFA produced a leftward shift in reversal potential (E_rev) of L-Glu-induced current and increased current amplitude at the potentials more negative than −100 mV. Diclofenac had no effects on E_rev and inhibited the current amplitude to the same extent at all negative potentials. These results indicate that NFA and diclofenac inhibit the L-Glu-induced EAAT1 current via different mechanisms.

Keywords: L-glutamate transporter, niflumic acid, diclofenac
Fig. 1. Effects of NFA and diclofenac on L-Glu-induced currents in EAAT1-expressing *Xenopus* oocytes. A: The traces of L-Glu (30 μM)-induced inward currents in the presence or the absence of NFA (a) or diclofenac (b) at −50 mV (bold line) and −120 mV (thin line). The oocytes were held at −50 mV and hyperpolarized to −120 mV for 400 ms, every 2 s. B: Concentration–response relationships for various NSAIDs at −50 and −120 mV. The amplitude of EAAT1 current in the presence of the drug was normalized to that just before the application. NFA (n = 5–9), diclofenac (n = 5), and indomethacin (n = 5) significantly inhibited EAAT1 currents. Aspirin (n = 4) did not affect EAAT1 currents. The inhibition by NFA was always more remarkable at −50 mV than at −120 mV. *P < 0.05 vs. the control group. Tukey’s test following ANOVA. C: Concentration–response curves of EAAT1 currents at −50 mV in the absence or the presence of NFA (n = 9) (left) or diclofenac (n = 8) (right). The currents were normalized to the maximal current induced by 3 mM L-Glu. I_{max} and K_{0.5} were calculated using every concentration–response trace by fitting with the following equation: $I = I_{max}[\text{L-Glu}] / (K_{0.5} + [\text{L-Glu}])$, using Graphpad PRISM 4 for Windows. Mean I_{max} with the drug was normalized to the mean I_{max} without drug. Treatment with NFA (n = 9) and diclofenac (n = 8) resulted in a decrease in the I_{max} without affecting the $K_{0.5}$ (Student’s t-test). *P < 0.05 vs. the control group. Tukey’s test following ANOVA.
Effects of NSAIDs on L-Glu Transporters

... transient outward current varied by Cl. Although NFA is reported to inhibit CaCC (6), the contribution of CaCC to EAAT1 current may be negligible at −50 and −120 mV according to the report. Diclofenac (100 μM − 1 mM) inhibited the EAAT1 current dose-dependently. Indomethacin (100 and 300 μM) inhibited the EAAT1 current, but the effects were even weaker. In the case of diclofenac and indomethacin, the strength of the effects at −50 and −120 mV were almost the same. Aspirin (100 μM − 1 mM) had no effects. At −50 mV, co-application of NFA with varying doses of L-Glu significantly reduced the maximal current (I max) to 55.1 ± 1.8% (Fig. 1C, left). The affinity for L-Glu (K 0.5) was not affected by NFA (from 50.0 ± 5.0 to 33.9 ± 6.3 μM). Similarly, diclofenac resulted in a decrease in the I max (81.7 ± 1.2%) without affecting the K 0.5 (from 27.3 ± 4.0 to 35.2 ± 6.3 μM) in a non-competitive manner (Fig. 1C, right). Although vehicle alone had no significant effect on I max and K 0.5 (data not shown), the K 0.5 value for diclofenac-vehicle was smaller than that for NFA-vehicle, which might have been attributed to the slight conformational change caused by DMSO and MeOH. Taken together, these results suggest that NFA and diclofenac modulate EAAT1 via a site different from the L-Glu recognition site.

AA is known to decrease EAAT1 current in a noncompetitive manner (7). Therefore, we compared the effects of NFA and diclofenac when co-applied with AA. The doses used for NFA and diclofenac were determined so as to obtain the equivalent effects and not to reach maximum effects (Fig. S1) (Supplementary Figure: available in the online version only). NFA and AA have an almost additive effect (Fig. 2A). Diclofenac and AA did not show an additive effect (Fig. 2B). The enhancement by AA of diclofenac’s effect was significantly weaker than that of NFA’s effect (Fig. 2C). These results imply that NFA and diclofenac interact with EAAT1 in different manners.

Figure 3A shows representative current–voltage curves for the EAAT1 currents in the presence or in the absence of NFA. The current value in the presence of NFA alone has been subtracted from that in the presence of NFA and L-Glu. NFA produced a significant leftward shift of reversal potential (E rev) (from 28.9 ± 5.1 to 5.2 ± 5.7 mV). At the potentials more negative than −100 mV, NFA increased the current amplitude. The influence of NFA on the current amplitude was voltage-dependent (Fig. 3B). Diclofenac inhibited the current amplitude to the same extent at all negative potentials and had no effects on the E rev (from 33.8 ± 9.1 to 27.5 ± 6.1 mV) (Fig. 3: C and D). These results further support the implication that NFA and diclofenac interact with EAAT1 in different manners.

The differences in voltage dependency and the effects on E rev suggest that NFA and diclofenac regulate EAAT1 via different mechanisms. The EAAT1 currents are the net result of charge movements from amino acid (aa) and ion cotransport (Na+ / H+ / K+) (I aa) and the ligand-gated Cl− conductance (I cl) (8). NFA has been reported to en-
hance the L-Glu-induced EAAT4 current by activating an uncoupled H+ conductance (5). In our preliminary data, NFA did not cause a modulation in the rate of Iaa and ICl, but rather modulates an uncoupled H+ conductance of EAAT1 (unpublished observation), which may be related to the effect of NFA obtained in our study. In contrast, diclofenac altered only the current amplitude but not the Erev. Erev for the net current depends on the relative magnitude of Iaa and ICl (8). Diclofenac might have affected both Iaa and ICl so as not to change Erev. The mechanism for the effects of diclofenac needs further investigation.

In our study, the influences on EAAT1 currents were caused by NFA, diclofenac, and indomethacin but not by aspirin. Mefenamic acid, diclofenac, and indomethacin are known to induce reproducible symptoms in patients with affective disorder (9). Aspirin has not been reported to have such side defects to date. If you take into account that GLAST (rodent EAAT1)–deficient mice showed phenotypic abnormalities related to schizophrenia (10), our results suggest that the psychiatric side effects of some NSAIDs have correlation with their effects on L-Glu transporters. Because NSAIDs have high affinity with the plasma protein, their brain delivery is restricted by the blood brain barrier (11). For example, the concentration of enantiomers of ibuprofen in cerebrospinal fluid is less than 1.5 μM after therapeutic application (12). Based on these data, the effective concentrations of NFA and diclofenac in our study are higher than that expected for therapeutic application. Habjan et al. recently indicated that EAAT1 current was inhibited by NFA. The extent of the effects was application–dependent and partially irreversible (4), raising the possibility that NFA and diclofenac modulate EAAT1 after long-term administration.

NSAIDs are widely used for patients with inflammation, fever, and pain. Our results may help understanding the mechanisms of side effects caused by some NSAIDs.

Acknowledgments

We thank Dr. Yasuda-Kamatani and Dr. Shimamoto for providing the cDNA of EAAT1 and Dr. Nakagawa and Dr. Shigeri for helpful suggestions. This work was partly supported by a Grant-in-Aid for Young Scientists from MEXT, Japan (KAKENHI 18700373, 21700422); a Grant for Research on Publicly Essential Drugs and Medical Devices from JHSF; and a Health and Labor Science Research Grant for Research on Risks of Chemicals from MHLW, Japan, awarded to K.S.

References

4. Habjan S, Vandenberg RJ. Modulation of glutamate and glycine