The Forefront for Novel Therapeutic Agents Based on the Pathophysiology of Lower Urinary Tract Dysfunction: Bladder Selectivity Based on In Vivo Drug–Receptor Binding Characteristics of Antimuscarinic Agents for Treatment of Overactive Bladder

Akira Yoshida¹, Tomomi Fujino¹, Shuji Maruyama¹, Yoshihiko Ito¹, Yuko Taki¹, and Shizuo Yamada¹,*

¹Department of Pharmacokinetics and Pharmacodynamics and Global Center of Excellence (COE) Program, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan

Received August 4, 2009; Accepted August 31, 2009

Abstract. We have reviewed the binding of antimuscarinic agents, used to treat urinary dysfunction in patients with overactive bladder, to muscarinic receptors in target and non-target tissues in vivo. Transdermal administration of oxybutynin in rats led to significant binding in the bladder without long-term binding in the submaxillary gland and the abolishment of salivation evoked by oral oxybutynin. Oral solifenacin showed significant and long-lasting binding to muscarinic receptors in mouse tissues expressing the M₃ subtype. Oral tolterodine bound more selectively to muscarinic receptors in the bladder than in the submaxillary gland in mice. The muscarinic receptor binding activity of oral darifenacin in mice was shown to be pronounced and long-lasting in the bladder, submaxillary gland, and lung. In vivo quantitative autoradiography using (+)N-[¹¹C]methyl-3-piperidyl benzilate in rats showed significant occupancy of brain muscarinic receptors on intravenous injection of oxybutynin, propiverine, solifenacin, and tolterodine. The estimated in vivo bladder selectivity compared to brain was significantly greater for solifenacin and tolterodine than oxybutynin. Darifenacin occupied few brain muscarinic receptors. Similar findings were also observed with positron emission tomography in conscious rhesus monkeys. The newer generation of antimuscarinic agents may be advantageous in the bladder selectivity after systemic administration.

Keywords: overactive bladder, antimuscarinic, in vivo receptor binding, bladder, other tissue, lower urinary tract

1. Introduction

An overactive bladder (OAB), characterized by an increased frequency of micturition, urgency, and urge incontinence, is very common in the geriatric population, a group that is rapidly increasing in number (1). Antimuscarinic agents (Fig. 1) are widely used as the first-line therapy for OAB because parasympathetic innervation is the predominant stimulus for bladder contraction (2). While anticholinergic agents have proven effective in patients with OAB, they are also associated with anticholinergic side effects, including dry mouth, constipation, somnolence, and blurred vision, because the muscarinic receptor mediates the excitatory and inhibitory actions of acetylcholine in the central and peripheral nervous systems (3). Dry mouth is the most common of these complaints and decreases quality of life. Therefore, numerous studies involving antimuscarinic agents to treat OAB have focused on targeting the urinary bladder over the salivary gland. The incidence of side effects on the central nervous system (CNS) is generally lower than that of dry mouth, but such effects may be of great concern in elderly patients because of an increase of blood-brain barrier (BBB) permeability with aging (4, 5). In this con-
Receptor Binding of Antimuscarinics

Clinical studies have demonstrated increased cognitive sensitivity to scopolamine (6, 7) and a reduced density of brain muscarinic receptors in the elderly (8). So, it is important to evaluate the bladder selectivity of antimuscarinic agents used to treat OAB for optimal medication.

2. In vivo drug–receptor binding characterization

There are a number of clinically useful drugs targeting receptors for neurotransmitters and hormones. The chain of events from drug administration to a certain pharmacological endpoint is complicated, but can be schematically simplified as illustrated in Fig. 2. It is evident that pharmacological effects of drugs are determined by both pharmacokinetic and pharmacodynamic processes. Pharmacokinetics includes the absorption, distribution, excretion, and metabolism of drugs, while pharmacodynamics includes the affinity of drugs for receptors, signal transduction, and homeostatic mechanisms (9, 10). The drug–receptor interaction results in a measured effect, and the magnitude of the interaction depends on the concentration of the drug in the biophase and on its affinity for the receptors. The biophase concentration depends not only on the amount of drug given, but also on factors such as the pharmacokinetic processes. As in vivo pharmacological specificity may be complicated by several factors including an equilibrium delay in concentrations of drugs between blood and the vicinity of the receptors, the formation of active metabolites, the occurrence of acute tolerance/sensitization, and the involvement of physiological control mechanisms (11), it may be important to examine directly the extracellular concentration, receptor occupancy, and pharmacological responses of drugs in different tissues such as target tissues and non-target tissues under in vivo conditions.

Currently, a number of novel drugs exhibiting target organ specificity, receptor subtype selectivity, and long duration of action have been developed to reduce side effects and improve patient compliance (12 – 16). The affinity of compounds for various receptors in the development of novel drugs has been evaluated mainly using in vitro radioligand binding assays in tissue membrane preparations and in intact cells (13, 15, 17 – 20). However, even if a compound displays high affinity towards a certain receptor in vitro, it may not necessarily be able to reach such binding sites under in vivo conditions. In other words, the in vitro receptor binding characteristics may not necessarily assure pharmacological specificity in vivo because various pharmacokinetic and pharmacodynamic factors are not taken into account. Therefore, techniques to measure in vivo receptor binding would be useful in clarifying the pharmacological specificity of drugs in relation to their pharmacokinetics. In this article, we describe in vivo receptor binding characteristics in the bladder and other tissues of antimuscarinic agents (Fig. 1) used to treat OAB and also discuss the rationale for use of in vivo analysis of receptor occupancy in drug development.

3. Muscarinic receptor selectivity in the bladder over the salivary gland

3.1. Transdermal oxybutynin

Oxybutynin was widely used to treat OAB, but its use was often limited by systemic side-effects, such as dry mouth, blurred vision, constipation, and tachycardia, that appear frequently in patients receiving oral oxybutynin (21). It has been shown that the controlled release dosage form of oxybutynin (OROS) causes dry mouth less often than the immediate release form in patients with OAB (22, 23). It is also worth noting that a transdermal thera-

Fig. 1. Chemical structures of oxybutynin, propiverine, solifenacin, tolterodine, and darifenacin.

Fig. 2. Schematic representation of in vivo drug–receptor binding in relation to pharmacokinetics and pharmacodynamics (for details, see the text).
duced little reduction in B max values for [3H]NMS binding in the manner, the transdermal application of oxybutynin produced little reduction in B max values for [3H]NMS binding in rat tissue. Based on a kinetic analysis of binding parameters for radioligand by Yamada et al. (27), it is suggested that oral but not transdermal oxybutynin produced an extremely long-lasting (noncompetitive) blockade of muscarinic receptor sites in the submaxillary gland, and this might be due to slowly dissociating blockade by oral oxybutynin of muscarinic receptors. Furthermore, in dose–response curves of pilocarpine-induced salivation, the antagonism by oral oxybutynin, unlike transdermal oxybutynin, was not simply competitive in that it suppressed the markedly maximal response by pilocarpine. Taken together, it is possible that a significant difference in exocrine muscarinic receptor binding characteristics under in vivo conditions partly underlies the lower incidence of severe dry mouth due to transdermal rather than oral oxybutynin in patients with OAB (24, 25).

It is known that orally administered oxybutynin is rapidly absorbed from the gastrointestinal tract with the major pathway of elimination by hepatic metabolism (28) and that the plasma concentration of DEOB in humans after oral administration is much higher than that of oxybutynin (29). Based on previous reports that muscarinic receptor binding affinity of DEOB was greater in the salivary gland than in the bladder (30, 31), it is considered that DEOB may be responsible for the long-lasting occupation of exocrine muscarinic receptors after oral oxybutynin. In fact, a similar concentration of DEOB to oxybutynin was detected after oral oxybutynin treatment in rats, but little of this metabolite was detected after transdermal oxybutynin treatment. So, it is possible that pharmacokinetic characteristics such as substantially less fluctuation in the plasma oxybutynin level and avoidance of a first-pass effect by transdermal oxybutynin brings about the significant difference in exocrine muscarinic receptor binding characteristics from that by oral oxybutynin, leading to the advantage of transdermal over oral oxybutynin in the treatment of OAB due to a lower incidence of dry mouth. In conclusion, transdermal oxybutynin may lead to a significant degree of binding to bladder muscarinic receptors without causing long-lasting occupation of muscarinic receptors in the submaxillary gland of rats and abolishment of salivation evoked by oral oxybutynin.

3.2. Solifenacin

Solifenacin is a novel muscarinic receptor antagonist intended for the treatment of urinary incontinence and other symptoms of OAB (32, 33). In vitro radioligand studies with human recombinant muscarinic subtypes have revealed that solifenacin exhibits high affinity and selectivity for the muscarinic M3 subtype, mainly mediating contraction of detrusor smooth muscle, relative to the M1 and M2 subtypes (32). The inhibitory effect of solifenacin on carbachol-stimulated Ca2+ mobilization was as potent as that of oxybutynin in detrusor cells, but 6 – 25 times weaker in submandibular gland cells (32, 33). In vivo studies in anesthetized rats have shown that solifenacin was 4 – 7 times more potent in inhibiting bladder contraction than salivation, whereas oxybutynin had little bladder selectivity (32, 34). Thus, solifenacin may exhibit pharmacological selectivity in the bladder relative to other tissues such as the salivary gland.

After oral administration of solifenacin and oxybutynin, some difference was seen between the two drugs in the time course of the increases in dissociation constant (Kd) for [3H]NMS binding in mouse tissues (35). The increase in Kd with solifenacin in most tissues was greatest at 2 h and was maintained for at least 6 or 12 h, while the increase in Kd in each tissue reached a maximum at 0.5 h after the oral administration of oxybutynin, followed by a rapid decline. This apparent distinction between solifenacin and oxybutynin appears to largely depend on their rate of increase and disappearance in the plasma. Based on the intensity and duration of the increases in Kd values, the muscarinic receptor binding activity of oral solifenacin in mice was suggested to be greatest in the submaxillary gland and lowest in the heart; and it was also suggested to be long-lasting in the bladder, prostate, submaxillary gland, and colon, in contrast to transient binding in the heart and lung. Considering the subtype expression of muscarinic receptors in rat tissues (36, 37), the observed selectivity of oral solifenacin may be interpreted to reflect the muscarinic subtype selectivity shown in the in vitro assay (32). Additionally, the intensity and time course of the inhibitory effects of solifenacin and
Receptor Binding of Antimuscarinics

Oxybutynin on salivary secretion after oral administration seemed to coincide reasonably well with those for muscarinic receptor binding in the submaxillary gland. In conclusion, oral solifenacin shows significant binding to muscarinic receptors in various tissues of mice, including the bladder, and the receptor binding activity of this agent may be long-lasting in most tissues expressing the M3 subtype (35, 38).

3.3. Tolterodine

Tolterodine has been developed as a muscarinic receptor antagonist to treat OAB (39), and pharmacological and radioligand binding studies have shown that tolterodine exerts a potent antimuscarinic effect in the isolated detrusor muscle of guinea pigs and humans (40). In addition, tolterodine has been demonstrated to display favorable tissue selectivity for the urinary bladder compared with the salivary glands in cats (40). Tolterodine is extensively metabolized in the liver to form an active metabolite, 5-hydroxymethyl metabolite (5-HM) (41, 42). In in vitro experiments, tolterodine and 5-HM competed concentration-dependently with [3H]NMS for binding sites in the bladder, submaxillary gland, and heart of mice; and the potency of both agents was considerably greater than that of oxybutynin (43). Also, muscarinic receptor binding affinity in the bladder compared with the submaxillary gland was identical for tolterodine and significantly higher for 5-HM, whereas the affinity of oxybutynin was greater in the submaxillary gland than in the bladder.

There seems to be a significant difference between oxybutynin and tolterodine in ex vivo muscarinic receptor binding characteristics in mouse tissues (43). Oral administration of tolterodine compared with oxybutynin resulted in relatively slower and longer-lasting binding in each tissue, as characterized by the increase of Kd values for [3H]NMS, which was greatest at 2 h and lasted for at least 6 or 12 h (Fig. 3). It should be noted that such extremely high receptor binding activity in the submaxillary gland as seen after oral oxybutynin was not observed with oral tolterodine and that the muscarinic receptor binding activity of oral tolterodine was of longer duration in the bladder than in the submaxillary gland. Furthermore, significant receptor binding activity by a lower dose of tolterodine was also observed in the bladder but not in the submaxillary gland. Therefore, oral tolterodine, unlike oral oxybutynin, binds more selectively to muscarinic receptors in the bladder than in the submaxillary gland. At these pharmacological doses, tolterodine was significantly weaker than oxybutynin in inhibiting pilocarpine-induced salivation of mice (43). Although the mechanism by which oral tolterodine causes bladder receptor selectivity in mice is not clear, it has been shown that most of the administered dose in mice receiving oral [14C]tolterodine is preferentially distributed to the eliminating organs, that is, gall bladder, urinary bladder, liver, kidney, and lung (44). Such high concentrations of tolterodine and 5-HM in the bladder may be attributable to the tissue selectivity of this drug. In conclusion, oral tolterodine binds significantly to muscarinic receptors in the mouse bladder and the receptor binding activity of this drug compared with oral oxybutynin is relatively slow and longer lasting.

3.4. Propiverine

Propiverine, a benzilic acid derivative, is one of the antimuscarinic agents most commonly used for the treatment of patients with an OAB (45 – 47). In clinical trials, propiverine has proved to be an effective drug for urinary incontinence due to detrusor overactivity with a moderate incidence of adverse events. In dogs, propiverine increased maximum bladder volume and had inhibitory
effects on acetylcholine-induced periodic contractions of the urinary bladder (48, 49). Furthermore, propiverine exerted competitive anticholinergic and calcium-antagonistic effects in the isolated urinary bladder of rats, dogs, and humans (49 – 51).

It has been shown that propiverine is metabolized in the liver to form active metabolites, 1-methyl-4-piperidyl benzilate hydrochloride (DPr-P-4), 1-methyl-4-piperidyl diphenylpropoxyacetate N-oxide [P-4(N→O)], and 1-methyl-4-piperidyl benzilate N-oxide [DPr-P-4(N→O)] (52, 53). In in vitro and in vivo studies, these metabolites exerted anticholinergic and calcium antagonistic effects in the urinary bladder of rats and guinea pigs (54 – 56). Therefore, it has been speculated that these metabolites are partially responsible for the spasmylytic activity in the bladder after the oral administration of propiverine.

Propiverine and its N-oxide metabolites [P-4(N→O), DPr-P-4(N→O)] competed with [3H]NMS binding sites in the bladder in a concentration-dependent manner in vitro, and the binding activity of DPr-P-4(N→O) was roughly equipotent to that of propiverine, while P-4(N→O) was considerably less active than propiverine (56). Following the oral administration of propiverine, there was relatively selective and longer-lasting binding of muscarinic receptors in the rat bladder compared with the submaxillary gland. Extremely high concentrations of P-4(N→O) and DPr-P-4(N→O) were detected in plasma after the oral administration of propiverine. Notably, following oral treatment with propiverine, the bladder showed the highest concentration of DPr-P-4(N→O), indicating the specific distribution of this metabolite into the target organ. Thus, DPr-P-4(N→O) may contribute greatly to the relatively selective and long-lasting occupation of bladder muscarinic receptors after the oral administration of propiverine at pharmacologically relevant doses.

3.5. Darifenacin

Darifenacin is a muscarinic receptor antagonist intended for the treatment of urinary incontinence and other symptoms of OAB (57, 58). In vitro radioligand studies with human recombinant muscarinic subtypes have revealed that darifenacin exhibits high affinity and specificity for the muscarinic M3 subtype relative to the other subtypes (59). In in vitro experiments with rats, darifenacin displayed significantly higher affinity for muscarinic receptors in the submaxillary gland than in the bladder and heart. Consistent with this observation, our previous study showed that the muscarinic receptor binding affinity of darifenacin was approximately 10 times greater in the human parotid gland than in the urinary bladder (60). Thus, these data confirm that darifenacin displays a relatively higher affinity for the M3 subtype than the M2 subtype.

The muscarinic receptor binding activity of oral darifenacin in mice was shown to be pronounced and long-lasting in the bladder, submaxillary gland, and lung, in contrast to transient or little receptor binding in the heart and colon (61). Because of exclusive expression of the M3 subtype in the submaxillary gland and moderate expression in the prostate and bladder, the remarkable receptor binding activity of oral darifenacin in the bladder and submaxillary gland is therefore interpreted to largely reflect the M3-subtype selectivity shown by the in vitro study. The pilocarpine-induced salivary secretion in mice was abolished 0.5 – 6 h after oral darifenacin, followed by the sustained suppression of salivation (61). The time-course of suppression after oral administration of darifenacin coincided well with that for the muscarinic receptor binding in the submaxillary gland. These functional data support further the idea that oral darifenacin may cause a selective and long-lasting blockade of M3 subtype under in vivo conditions.

4. Muscarinic receptor selectivity in the bladder over the brain

In an ARG study, the intravenous injection of oxybutynin, propiverine, tolterodine, and solifenacin significantly decreased in vivo specific (+)[14C]methyl-3-piperidyl benzilate ([14C](+)-3-MPB, PET ligand of muscarinic receptor) binding in each brain region of rats in a dose-dependent manner (62) (Fig. 4). According to the estimated RO50 values, the potency of muscarinic receptor occupancy by each agent in the rat brain appeared to be greatest for oxybutynin, followed by tolterodine, solifenacin, and propiverine. In contrast, darifenacin at pharmacologically effective doses did not significantly reduce in vivo specific [11C](+)-3-MPB binding so that the RO50 value could not be estimated. RO50 values of antimuscarinic agents were similar to intravenous doses inhibiting learning/memory behavior in rats (63). Thus, these values could be regarded as the index of CNS pharmacological effects following the blockade of brain muscarinic receptors. Furthermore, the dose ratios (RO50/ID50) of antimuscarinic agents for the brain receptor occupancy to the inhibitory potency of increases in intravesical pressure were considered to reflect in vivo pharmacological selectivity for the urinary bladder over the brain. This ratio was relatively large for solifenacin (8.1 – 46.7), tolterodine (3.6 – 17.9), and propiverine (2.2 – 8.9), compared with oxybutynin (1.4 – 3.4). Thus, the selectivity for the urinary bladder over the brain was relatively low for oxybutynin, suggesting a high probability of CNS side effects at pharmacological doses to treat OAB. A similar finding was also
made in a PET study in conscious rhesus monkey that oral administration of oxybutynin at clinically relevant doses exhibited significant (40% – 60%) occupancy of muscarinic receptors in the brain (our unpublished observation). The selectivity for the urinary bladder over the brain of solifenacin and tolterodine was clearly higher than that of oxybutynin in rats. In clinical studies, the incidence of CNS side effects of tolterodine was shown to be lower than that of oxybutynin and comparable to that with placebo (64 – 66). Thus, these data suggest that solifenacin and tolterodine have advantages in the treatment of OAB owing to less CNS effects. Furthermore, it is suggested that darifenacin induces the lowest incidence of CNS effects among antimuscarinic agents examined.
Antimuscarinic agents must first pass the blood-brain barrier (BBB) to occupy central muscarinic receptors. The observed difference among antimuscarinic agents in the potency of brain muscarinic receptor occupancy may be defined by BBB permeability, which is responsible for CNS effects in patients. The passive penetration of drugs through this physiologic barrier generally depends on physicochemical factors such as high lipophilicity, low degree of ionization (neutral charge), and small molecular size (64). The characteristics of chemical properties of oxybutynin relative to tolterodine—lipophilicity (Log K\text{ow}: 4.68 vs. 1.83) (67, 68) and neutral polarity (pKa: 6.44 vs. 9.87) (68, 69)—make it the most likely to cross the BBB (70). Additionally, muscarinic receptor subtype selectivity of antimuscarinic agents may be implicated in the appearance of CNS effects. All five muscarinic receptor subtypes are expressed in the brain (71, 72). The M₁ receptor was abundant in the cortex and hippocampus. The striatum contains both M₁ and M₄ receptors. By contrast, the M₂ receptor was predominantly localized to the brainstem and cerebellum. The M₃ receptor displays lower density in the brain compared to the M₁, M₂, and M₄ receptors. The cognitive dysfunction by antimuscarinic agents may be mediated mainly by the M₁ and M₂ receptors in the CNS (73). Oxybutynin shows selectivity for the M₁, M₃, and M₄ receptors, while tolterodine and propiverine are relatively nonselective to muscarinic receptor subtypes (60, 74). Solifenacin and darifenacin show higher selectivity to the M₁ receptor than M₁, M₂, and M₄ receptors. Thus, M₁ selectivity in addition to high BBB permeability of oxybutynin may be more apt to cause CNS side effects. Such muscarinic receptor subtype selectivity may be partly associated with an observed difference among antimuscarinic agents in the in vivo potency of brain receptor occupancy.

5. Conclusions

The determination of in vivo and ex vivo drug–receptor binding has been to use useful in predicting the dose, potency, and duration of pharmacological effects of receptor antagonists. The analysis of muscarinic receptor binding characteristics in the bladder and other tissues after the systemic administration of antimuscarinic agents has revealed that in the treatment of OAB, systemic adverse effects such as dry mouth and cognitive dysfunction could be avoided by the new generation of antimuscarinic agents with high bladder selectivity. Consequently, the in vivo measurement of receptor occupancy by drugs may allow evaluation of pharmacological specificity from the integrated viewpoint of pharmacokinetics and pharmacodynamics.

Acknowledgment

This work was partly supported by a Grant-in-Aid for Scientific Research (C)(2)(No.15591703) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

References

42 Postlind H, Danielson A, Lindgren A, Andersson SH. Tolterodine, a new muscarinic receptor antagonist, is metabolized by cytochromes P450 2D6 and 3A in human liver microsomes. Drug Metab Dispos. 1998;26:289–293.

