Pathophysiological Roles of Endothelin Receptors in Cardiovascular Diseases

Mamoru Ohkita1, Masashi Tawa1,2, Kento Kitada1,3, and Yasuo Matsumura1,*

1Laboratory of Pathological and Molecular Pharmacology, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
2Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
3Department of Pharmacology, Kagawa University Medical School, 1750–1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan

Received January 11, 2012; Accepted June 4, 2012

Abstract. Endothelin (ET)-1 derived from endothelial cells has a much more important role in cardiovascular system regulation than the ET-2 and ET-3 isoforms. Numerous lines of evidence indicate that ET-1 possesses a number of biological activities leading to cardiovascular diseases (CVD) including hypertension and atherosclerosis. Physiological and pathophysiological responses to ET-1 in various tissues are mediated by interactions with ETA- and ETB-receptor subtypes. Both subtypes on vascular smooth muscle cells mediate vasoconstriction, whereas the ETB-receptor subtype on endothelial cells contributes to vasodilatation and ET-1 clearance. Although selective ETA- or nonselective ETA/ETB-receptor antagonisms have been assumed as potential strategies for the treatment of several CVD based on clinical and animal experiments, it remains unclear which antagonisms are suitable for individuals with CVD because upregulation of the nitric oxide system via the ETB receptor is responsible for vasoprotective effects such as vasodilatation and anti-cell proliferation. In this review, we have summarized the current understanding regarding the role of ET receptors, especially the ETB receptor, in CVD.

Keywords: endothelin-1, endothelin receptor, endothelial cell, vascular smooth muscle cell, cardiovascular disease

1. Introduction

Endothelin (ET) derived from vascular endothelial cells (ECs), which consists of a 21 amino acid peptide, has a strong and persistent vasoconstrictive action (1). ET has three family peptides (ET-1, ET-2, and ET-3). As the distribution and properties of these peptides are different, each peptide is believed to play specific physiological roles. ET has two types of receptor: the ETA receptor with a high affinity for ET-1 and ET-2 is mainly located on muscle cells, whereas the ETB receptor with an affinity for all three peptides lies on endothelial, epithelial, endocrine, and nerve cells. Of the three ET isoforms, ET-1 plays a much more important role in the regulation of vascular tone than the others and has a powerful effect on the cardiovascular system. Thus, the role of ET-1 and its receptors as the etiology or precipitating factors in various cardiovascular diseases (CVD) has been investigated (2, 3). In addition, numerous studies have reported effective treatment targeted at ET-1 in pulmonary hypertension, salt-sensitive hypertension, diabetes, and acute and chronic kidney diseases using ETA-converting enzyme (ECE) inhibitors and ET-receptor antagonists (2, 4). Several animal models genetically lacking ET-1 and ET receptors have also been used as a tool for determining the physiological and pathophysiological roles of ET-1 and ET receptors in CVD (5 – 10).

2. ET system

ECs are known as the main physiological source of vascular ET-1. Vascular smooth muscle cells (VSMCs),
macrophages, leukocytes, cardiomyocytes, and fibroblasts are also capable of ET-1 production (11–13). Several studies have indicated that various physical and chemical factors such as thrombin, angiotensin II, cytokines, hypoxia, and shear stress stimulate ET-1 gene expression in ECs by DNA binding of transcription factors including activator protein-1, GATA-2, Smad, nuclear factor-kappa B (NF-κB), and hypoxia inducible factor-1 (14–18). On the other hand, ET-1 is synthesized as an inactive 203-amino-acid precursor, preproET-1, which is proteolytically cleaved to yield a second inactive 39 (or 38)-amino-acid segment called ‘big’ ET-1. The last part of the proteolytic process is mainly carried out by ECE (ECE-1 and ECE-2) and leads to the production of the bioactive form of 21-amino-acid peptide ET-1. As ET-1 release from ECs is constitutive, ET-1 biosynthesis and release appear to be mainly controlled via regulation of gene transcription and/or ECE activity.

The downstream effects of ET-1 are mediated by two G-protein-coupled receptors ETA and ETB. In the vasculature, the ETA receptor on VSMCs mediates vasoconstriction and cell proliferation, whereas the endothelial ETB receptor (generally called ETB1) exerts opposite effects. Stimulation of the ETB1 receptor leads to the release of vasodilators such as nitric oxide (NO) and prostaglandin I2 and clearance of ET-1 from the circulation within the lungs, kidneys, and liver (19–23). On the other hand, although another ETB-receptor subtype (ETB2) located on VSMCs exerts vasoconstriction, it has become clear that ETB2 receptor-induced vasoconstriction is negligible under normal conditions but becomes more important in some kinds of diseases such as atherosclerosis and essential hypertension (24–26).

Many vascular relaxing or contraction factors produced in the blood vessel wall maintain normal endothelial function by mutually antagonistic actions. In particular, there are various reports regarding the interaction of ET-1 and NO (27). For instance, ET-1 binding to the ETB1 receptor leads to phosphoinositide 3-kinase (PI3K) activation and subsequent production of phosphatidylinositol-3,4,5-trisphosphate, which results in recruitment and activation of protein kinase B/Akt (28). This PI3K/Akt pathway is responsible for the phosphorylation and activation of endothelial NO synthase (eNOS). On the other hand, ET-1 also reduces eNOS expression and its activity through increases in hydrogen peroxide by the ETA receptor (29). Therefore, reduced ETB-receptor function and/or overactivation of the ETA receptor eliminate the protective function by NO in vessels and promote the pathological formation of various circulatory diseases (Fig. 1).

3. Pathophysiological roles of ET receptors

3.1. Cardiac disease

Myocardial infarction results from the formation of an atherosclerotic plaque and ultimately leads to heart failure. Several studies have reported elevations in plasma ET-1 levels in patients with coronary artery diseases such as angina (30), myocardial infarction (31), and immediately after percutaneous transluminal coronary angioplasty (32). In addition, the production and release of ET-1 as well as ET-receptor expression is enhanced during myocardial ischemia/reperfusion (33, 34). Thus, these findings suggest that endogenous ET-1 plays an important role in the pathophysiology of myocardial ischemia/reperfusion.

Locally generated ET-1 contributes to tissue repair or remodeling of the infarcted heart in an autocrine/paracrine manner, thereby exerting an immediate beneficial effect on damaged tissue (33, 34). Other studies reported that ET-1 administered prior to the onset of ischemia exhibited cardioprotective effects (35, 36). Exogenous ET-1 mimics the cardioprotective effect of pre-conditioning against infarction, apparently via ETA receptor-mediated activation of PKC and a mitochondrial type of ATP-sensitive K+ channel (37, 38). On the other hand, a substantial and long lasting rise in ET-1 induces myocardial hypertrophy, which is associated with a maladaptive effect on myocardial structure and function, thereby leading to fatal events (39–42). The ET-1 / ETA receptor pathway also promotes myocardial fibrosis by enhancing cardiac fibroblast proliferation, adhesion molecule expression, and extracellular matrix deposition (43, 44). Therefore, the use of ET-receptor antagonists, mostly targeting the ETA receptor, provides beneficial effects in chronic heart failure as evidenced by a reduced infarct size, improved reperfusion coronary flow, or protection during ischemia/reperfusion (39–42).

In myocardial ischemia, sympathetic overactivity accompanied by excessive norepinephrine (NE) release is associated with cardiac dysfunction and arrhythmia, thereby exaggerating primary ischemia and initiating a malignant cycle that can cause further myocardial damage and high-risk cardiac dysfunction (45, 46). Both ETA and ETB receptors exist in the sympathetic nerve varicosities of guinea pig hearts and exhibit opposite effects on NE release in association with reperfusion arrhythmias: ETA receptors evoke NE release, whereas ETB receptors prevent it (47). Previous studies showed that a selective ETA-receptor antagonist or the combination of ETA and ETB-receptor antagonists suppressed excessive NE release from sympathetic nerve endings in postischemic rat hearts and improved cardiac dysfunction after ischemia/reperfusion (9, 47). In addition, exogenous
ET-1 induced excessive NE release and subsequent cardiac dysfunction, counteracted with the Na+/H+ exchanger (NHE) inhibitor 5-((N-ethyl-N-isopropyl)-amiloride (EIPA). Thus, the excessive NE overflow triggered by the ET-1 / ETA / NHE pathway seems to be contributive to post-ischemic cardiac dysfunction in rats (Fig. 2). On the other hand, both pharmacological blockade and genetic deficiency of ETB receptors exaggerated the post-ischemic excessive NE release and cardiac dysfunction. Oikonomidis et al. demonstrated that NE levels during the early phase of myocardial infarction are much higher in ETB-deficient rats than wild-type rats and this contributes to the incidence of ventricular arrhythmogenesis, thereby suggesting that a selective ECE inhibitor may be useful in ischemic cardiac diseases at the clinical level, which warrants further attention. In fact, SM-19712 and FR901533, both of which are highly selective ECE inhibitors, exert a desirable influence on myocardial infarction by decreasing plasma concentrations of ET-1 (52, 53). On the other hand, exogenously applied big ET-1 has qualitatively similar effects to ET-1 in the cardiovascular system in vivo and in vitro (54 – 57). Against this background, Sharif et al. demonstrated that exogenously applied ET-1 exhibited opposite effects to endogenously released ET-1 on ischemic ventricular arrhythmias (58).
We also reported that exogenous big ET-1 suppressed ischemia/reperfusion-induced NE overflow and improved cardiac dysfunction observed after reperfusion, in spite of the fact that ET-1 content in coronary effluent from the heart exposed to ischemia/reperfusion was increased by exogenous big ET-1 application (59). In addition, treatment with big ET-1 in the presence of A-192621, a selective ETB-receptor antagonist, failed to exert beneficial effects against ischemia/reperfusion-induced NE overflow and subsequent cardiac dysfunction. Thus, ET-1 generated from exogenously applied big ET-1 preferentially may act on ETB receptors rather than ETA receptors, leading to an increase in NO production and subsequent suppression of NE overflow (Fig. 2).

A study by Khamaisi et al. (60) has shown that ECE-1, a dominant subtype of ECE, colocalizes with the ETB receptor in the kidney. Accordingly, there is a possibility that ECE-1 and ETB receptors colocalize somewhere within cardiac tissues. If so, endogenously generated ET-1 should also act preferentially on ETB receptors. ECE-1 is classified into four isoforms by differences in subcellular distribution in rats (61). Emoto et al. described that the isoform cleaving big ET-1 was different between endogenously synthesized and exogenously supplied ones; endogenous big ET-1 may be cleaved by ECE-1a, which is located intracellularly, whereas exogenously applied big ET-1 may be cleaved by ECE-1b at cell surfaces (62). If ECE1b expressed on the cell surface is
close to ET$_B$ receptors, it is a reasonable explanation as to why ET-1 produced by exogenous big ET-1 preferentially acts on ET$_B$ receptors but not on ET$_A$ receptors. However, further investigations are required to clarify this interesting hypothesis.

According to the results of animal and human studies, the therapeutic potential of ET-receptor antagonists in human heart failure had been tested in randomized clinical trials [REACH-1 (63) and ENABLE (M. Packer, unpublished data): bosentan, RITZ (64 – 67): tezosentan, HEAT (68) and EARTH (69): darusentan, ENCOR (70): enrasentan]. Most of these studies failed to demonstrate a clear improvement in the clinical status of patients (Table 1) and had to be stopped prematurely because of worsening of the disease or hepatic toxicity (71). Therefore, although these results cast doubt on the usefulness of ET-receptor antagonists for the treatment of myocardial infarction, the pathophysiological role of ET-1, as well as the potential benefit of ET-receptor antagonists, still needs to be investigated in cardiac diseases.

3.2. Balloon angioplasty and neointimal formation

Cardiovascular hypertrophy and remodeling are not simply a response to elevated blood pressure. Various vasoactive substances, such as angiotensin II, are implicated in the development of these structural changes (72). ET-1 has potent mitogenic and hypertrophic properties, mainly via stimulation of ET$_A$ receptors (73). ET$_B$ receptor-mediated actions also protect against cardiovascular hypertrophy via endothelial NO generation, which inhibits mitogenesis and the proliferation of VSMCs (74).

Balloon angioplasty and stent insertion are now widely used for the treatment of coronary arterial disease. Although these procedures improve regional myocardial blood flow by dilating stenotic coronary vessels, one major drawback of this therapeutic approach is restenosis after the procedure because of the proliferation of VSMCs and neointimal formation triggered by mechanical damage to ECs. Several growth factors or vasoactive peptides are related to the process of neointimal formation. In a clinical study, expressions of ECE, ET-1, and ET receptors were enhanced in neointimal VSMCs after percutaneous coronary intervention in human coronary arteries (75). In addition, increases in ET-1 levels were observed in the coronary circulation after percutaneous transluminal coronary angioplasty (76). Anggrahini et al. recently demonstrated that ET-1 derived from ECs mainly contributes to the process of vascular remodeling in the model of flow cessation (10). Thus, ET-1 is closely related to the pathogenesis of restenosis after angioplasty. Similar results have been reported in animal models with restenosis such as balloon injury (77, 78). Murakoshi et al.

<table>
<thead>
<tr>
<th>ETR antagonist (selectivity)</th>
<th>Study</th>
<th>Patients</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Bosentan</strong> (ET$_A$/ET$_B$)</td>
<td>REACH-I</td>
<td>n = 370</td>
<td>NYHA IIIb-IV LVEF &lt; 35%</td>
<td>500 mg, b.i.d., p.o. for 24 wk vs. placebo</td>
</tr>
<tr>
<td></td>
<td>ENABLE I</td>
<td>n = 1613</td>
<td>NYHA IIIb-IV LVEF &lt; 35%</td>
<td>62.5 mg, b.i.d., p.o., for 4 wk increased to 125 mg, for an average of 72 wk vs. placebo</td>
</tr>
<tr>
<td><strong>Tezosentan</strong> (ET$_A$/ET$_B$)</td>
<td>RITZ-1</td>
<td>n = 675</td>
<td>ADHF</td>
<td>50 mg/h, i.v. for 24 h vs. placebo</td>
</tr>
<tr>
<td></td>
<td>RITZ-2</td>
<td>n = 292</td>
<td>ADHF</td>
<td>50 or 100 mg/h, i.v. for 24 h vs. placebo</td>
</tr>
<tr>
<td></td>
<td>RITZ-4</td>
<td>n = 193</td>
<td>ADHF with ACS</td>
<td>25 mg/h, i.v. for 1 h then 50 mg/h, i.v. for 23 to 47 h vs. placebo</td>
</tr>
<tr>
<td></td>
<td>RITZ-5</td>
<td>n = 84</td>
<td>ACHF</td>
<td>10, 20, 50 mg/h, i.v. for 24 h vs. placebo</td>
</tr>
<tr>
<td><strong>Darusentan</strong> (ET$_A$)</td>
<td>HEAT</td>
<td>n = 157</td>
<td>NYHA II LVEF &lt; 35%</td>
<td>10, 100, 300 mg/day, p.o., for 3 wk vs. placebo</td>
</tr>
<tr>
<td></td>
<td>EARTH</td>
<td>n = 642</td>
<td>NYHA II-IV LVEF &lt; 35%</td>
<td>10, 25, 50, 100, 300 mg/day, p.o., for 24 wk vs. placebo</td>
</tr>
<tr>
<td><strong>Enrasentan</strong> (ET$_A$/ET$_B$)</td>
<td>ENCOR</td>
<td>n = 419</td>
<td>NYHA II-III LVEF &lt; 35%</td>
<td>30, 60, 90 mg/day, p.o., for 36 wk vs. enalapril 10 mg/day, p.o., q.i.d. vs. placebo</td>
</tr>
</tbody>
</table>

al. showed that vascular remodeling caused by the cessation of blood flow was markedly accelerated in the carotid artery of ETβ receptor–knockout mice, and long-term treatment with an ETβ-receptor antagonist worsened vascular remodeling in wild-type mice (6). In contrast, selective ETα-receptor blockade could attenuate this vascular remodeling in the same animals. There has also been a report showing that ET-1 contributes to the remodeling of mesenteric resistance arteries in diabetes via activation of ETα receptors, and ETβ receptor–mediated actions provide vasoprotective effects (79). Our previous report has demonstrated that vascular remodeling is markedly attenuated by treatment with a selective ETα-receptor antagonist, whereas pharmacological blockade of ETβ receptors aggravates neointimal hyperplasia after balloon injury (80). Treatment with an ETα/ETβ dual receptor antagonist also suppresses neointimal hyperplasia and the efficacy of treatment is comparable with that of a selective ETα-receptor antagonist (80), thereby suggesting that the antagonism of ETβ receptors does not seem to impair the positive effects of concomitant ETα-receptor antagonism. Furthermore, we also confirmed similar results in ETβ-deficient rats. Therefore, antagonism of the ET-1 / ETα receptor pathway appears to be essential for preventing neointimal hyperplasia after balloon injury, irrespective of the presence of ETβ receptor–mediated actions.

3.3. Pulmonary hypertension

The lungs are known to synthesize ET-1 and possess ETα and ETβ receptors, both of which are involved in physiological and pathophysiological actions of ET-1 in the lung. In particular, endothelial ETβ receptors in lungs are responsible for circulating ET-1 clearance, with close to 50% removal during pulmonary transit in humans (81).

Pulmonary hypertension is characterized by elevated pulmonary arterial pressure, pulmonary arterial remodeling, and right ventricular hypertrophy. ET-1 has been regarded as a major pathological formation and progression factor in pulmonary hypertension because there is a clear correlation between the severity of this disease and increases in the concentration of plasma ET-1 in patients who have primary and secondary pulmonary hypertension (82, 83). Both selective ETα- and nonselective ETα/ETβ-receptor antagonists are now widely available for the treatment of pulmonary hypertension at the clinical level (84, 85).

In monocrotaline (MCT)-treated pulmonary hypertensive rats, ET-1 concentrations are higher in their lung perfusate than that of control animals (86). In these rats, cardiac ET-1 mRNA expression and ET-1 peptide levels in heart and plasma are known to be elevated (87, 88). In addition, elevated ET-1 levels in right ventricular tissue are considered to be induced mainly by pressure overload to the heart rather than the primary causal factor of pulmonary hypertension (88); however, since ET-1 is a potent growth factor of myocardial cells (89), excess ET-1 production in right ventricular tissue seems to promote the progression of right ventricular hypertrophy in pulmonary hypertension. In fact, ETα-receptor antagonism or ETα/ETβ-receptor antagonism efficiently attenuated the progression of right ventricular hypertrophy and dysfunction in MCT-induced pulmonary hypertensive rats (87, 90 – 92).

Although the effectiveness of both selective ETα- and nonselective ETα/ETβ-receptor antagonists has been demonstrated in human studies, as well as MCT-induced (87, 90 – 92) and hypoxic pulmonary hypertension (92 – 94) in rats, it remains unclear as to which type of selective ETα-receptor blockade or nonselective ETα/ETβ-receptor blockade is preferable. In other words, which receptor function of ETα1 involved in NO production and ET-1 clearance or ETα2 contributing to vascular contractile action should we pay attention to? A study by Nishida et al. (95) showed that blockade of the ETα receptor inhibited the pathological progression in MCT-induced pulmonary hypertensive rats, but the simultaneous suppression of the ETβ receptor increased the ETα-receptor antagonist actions. More specifically, combined dosing with an ETα-receptor antagonist (ABT-627) and ETβ-receptor antagonist (A-192621) exerted similar or more effective actions than that of ABT-627 single dosing against increases in right ventricular systolic pressure and right ventricular hypertrophy by MCT treatment. In addition, increases in the sensitivity of vascular contraction via ETα and ETβ receptors and reductions in vascular relaxation via the ETβ1 receptor were observed in the pulmonary vascular bed in this rat model. Furthermore, although pharmacological or genetic inhibition of the ETβ receptor worsened MCT-induced pulmonary hypertension, ABT-627 completely suppressed this deterioration (8, 95). These findings suggest that an ETα/ETβ-receptor antagonist brings reasonable validity by suppressing overactivation of the ETα / ETβ receptor system and vasoconstriction via the ETβ1 receptor. Moreover, it is less likely that the ETβ1 receptor actively functions as a protective factor through increases in NO production.

3.4. Salt-sensitive hypertension

Previous studies, including ours, have demonstrated elevations in ET-1 content and ET-1 mRNA expression in vascular tissues of deoxycorticosterone acetate (DOCA)-salt hypertensive rats (96 – 98) and Dahl salt-sensitive rats (99). Long-term treatment with selective
ET$_A$-receptor antagonists or nonselective ET$_A$/ET$_B$-receptor antagonists prevented DOCA-salt–induced hypertension and related tissue injuries, such as vascular hypertrophy, in a qualitatively similar fashion (100 – 102). Although it is unknown which type of antagonist is favorable for the treatment of these hypertensive models, there is general agreement that ET$_B$ receptor–mediated actions play an important role in the development of salt-dependent hypertension and associated tissue injury. On the other hand, we reported that chronic treatment of DOCA-salt rats with A-192621, an orally active and highly potent ET$_B$-selective receptor antagonist, led to exaggerated deterioration of cardiovascular and renal injuries (102). Other studies using salt-loaded rats also showed that chronic ET$_B$-receptor blockade indirectly caused activation of the ET-1 / ET$_A$ receptor system followed by increases in blood pressure, thereby suggesting that blockade of the ET$_B$ receptor was harmful in salt-sensitive hypertension (103). In addition, the hypertensive effect induced by an intravenous bolus injection of the selective ET$_B$-receptor antagonist Ro 46-8443 in DOCA-salt rats was greater than that in ovariectomized control rats (104). Renal vasoconstrictor effects induced by the selective ET$_B$-receptor antagonist BQ-788 were also enhanced in DOCA-salt hypertensive rats (105). Our previous study also demonstrated that rats with genetic ET$_B$ deficiency clearly exhibited exaggerated blood pressure sensitivity to DOCA-salt treatment over that in wild-type rats (5). ET$_B$-deficient rats had enhanced vascular hypertrophy, worsening of renal dysfunction, and tissue damage after DOCA-salt treatment. These changes seen in ET$_B$-deficient rats were markedly suppressed by the daily administration of ABT-627, a potent ET$_A$-selective receptor antagonist (5). Furthermore, Elmarakby et al. reported that an ET$_A$-receptor antagonist attenuated salt-induced hypertension and vascular superoxide production in genetic ET$_B$ deficiency (7). Taken together, ET$_B$ receptor–mediated actions are protective in the pathogenesis of salt-sensitive hypertension. These results also suggest that the antagonism of the ET$_A$ receptor is essential for protection from cardiovascular disease including salt-sensitive hypertension, irrespective of the presence of the ET$_B$ receptor. This view may explain the findings that selective ET$_A$-receptor antagonists and nonselective ET$_A$/ET$_B$-receptor antagonists similarly improve salt-sensitive hypertension and related tissue injuries.

3.5. Sex differences in CVD

Clinical and epidemiological evidence suggests a sexually dimorphic pattern of atherosclerotic CVD in humans. The incidence of CVD is lower in women before menopause than in men and postmenopausal women (106, 107). These sex differences are considered to be caused by the vasoprotective effect of estrogen (108 – 110). In fact, several clinical studies showed that postmenopausal women who receive estrogen replacement therapy (ERT) have a substantially lower risk of incidence of cardiovascular disease (111, 112). The protective effect of estrogen on the cardiovascular system is closely related to the up-regulation of endothelial NO production and down-regulation of adhesion molecule activity, smooth muscle proliferation/migration, and superoxide production (113 – 115). However, recent clinical trials produced different results. The Heart Estrogen-Progestin Replacement Study (HERS) and Women’s Health Initiative Clinical Trial and observational study (WHI) did not show any benefit of ERT (116, 117). Thus, the effects of ERT on cardiovascular disease are still controversial. Determinations of the mechanisms of estrogen-exhibited vasoprotective effects and alternative therapies of estrogen in postmenopausal women remain a critical issue.

Substantial evidence indicates that gonadal hormones, especially 17$\beta$-estradiol, modulate the ET system. 17$\beta$-Estriadiol inhibits both basal and cytokine-induced ET-1 production at the transcriptional level (118, 119). Vascular functional ECE activity is also affected by 17$\beta$-estradiol (120). In addition, several clinical studies have reported that plasma ET-1 concentrations are lower in women than men (121 – 123). Plasma ET-1 concentrations in women fluctuate during the menstrual cycle (124) and pregnancy (125). Healthy older women exhibit higher plasma ET-1 levels than those of healthy young or middle-aged women. Hormone replacement therapy (17$\beta$-estradiol plus methoxyprogesterone) in healthy postmenopausal women results in decrease in plasma ET-1 levels (122). Furthermore, an investigation of cross-gender hormone treatment indicated that plasma ET-1 levels in male-to-female transsexual patients were decreased (126). Taken together, it is reasonable to assume that 17$\beta$-estradiol is mainly involved in sex differences in the ET system.

Sex differences in ET-receptor density, as well as in the ratio of ET-receptor subtypes, have been also investigated. Ergul et al. reported that men’s saphenous veins have a larger number of ET receptors and an increased ratio of ET$_A$ to ET$_B$ receptors compared to women’s saphenous veins and that these differences were reflected by the sex differences in ET-1-induced vascular contractile responses (127). On the other hand, although several animal studies also indicated that ET receptors are involved in the sex differences in the incidence of CVD, the effect of estrogen on these receptors is quite contradictory. For example, Nuedling et al. demonstrated up-regulation of the ET$_B$ receptor in the heart of ovariectomized female spontaneously hypertensive rats, which
could be reversed by exogenous estrogen replacement (128). They also confirmed downregulation of the ETβ receptor by 17β-estradiol in cultured cardiomyocytes. Others reported similar results showing that vascular mRNA expression of ETB, but not ETα receptors in DOCA-salt–induced hypertensive rats was higher in males than that observed in females (129, 130). In contrast, Pedersen et al. showed that 17β-estradiol treatment reduced levels of the ETα, but not the ETβ receptor in the rabbit thoracic aorta and epicardial arteries (131). However, their previous study indicated that 17β-estradiol induced up-regulation of ETα-receptor gene expression in coronary arteries from ovariecetomized hyperlipidemic rabbits (132). Thus, estrogen may cause differential effects on vascular ET receptors in different species and/or vascular beds.

Our previous study demonstrated that the frequency of neointimal formation after balloon injury was much lower in females than in males and that neointimal formation after vascular injury in female rats was significantly aggravated by ovariectomy, and this aggravation was markedly improved by 17β-estradiol treatment (133). These results clearly indicate that estrogen inhibits neointimal formation after vascular injury in female rats. Furthermore, this sex difference in neointimal formation was abolished by genetic ETβ-receptor deficiency or pharmacological ETβ-receptor blockade. Both ovariecctomy and ovariectomy plus 17β-estradiol treatment failed to affect the enhanced neointimal formation observed in intact female ETβ-deficient rats. In other words, as the vasoprotective effects of estrogen after vascular injury were abolished by genetic deficiencies in the ETβ receptor, estrogen likely reduces neointimal formation after vascular injury via a mechanism that depends on ETβ receptor–mediated actions. These findings suggest that ETβ receptor–mediated actions seem to occur downstream of the vasoprotective effects of estrogen, although the relationship between ETβ receptor– and estrogen receptor–signaling systems remains unclear. On the other hand, neointimal hyperplasia observed in female ETβ-receptor–deficient rats is almost completely suppressed by ETA or ETA/ETβ-receptor antagonists. Thus, augmentation of ETA receptor–mediated actions under ETβ-receptor dysfunction seems to be responsible for the abolition of sex differences in vascular remodeling.

4. Conclusion

Since the discovery of ET-1, many researchers have elucidated the physiological and pathophysiological role of ET-1 and ET receptors in the cardiovascular system over the past 20 years. Among many non-peptide and orally available ET-receptor antagonists developed so far, the nonselective ETα/ETβ-receptor antagonist bosentan and selective ETα-receptor antagonist ambrisentan are now clinically utilized as agents for pulmonary artery hypertension. There is a possibility that ambrisentan could be widely used in the treatment of pulmonary hypertension because of less interactions with other drugs or side effects such as liver dysfunction. In addition, future clinical applications may provide new findings about which antagonist is more effective, a nonselective ETα/ETβ-receptor or selective ETα-receptor antagonist. On the other hand, although the selective ETα-receptor antagonist sitaxsentan, which was released in Europe and the United States, was recently forced to be withdrawn because of a high risk of liver failure, it is hoped in the future that other ET-receptor antagonists, including macitentan and zibotentan, currently being developed can be utilized in clinical treatment targeted at the cardiovascular ET-1 system.

References

11 Nunez DJR, Brown MJ, Davenport AP, Neley CB, Schofield JP,


14 Wilson DB, Dorfman DM, Orkin SH. A nonerythroid GATA-factor a and interferon


38 Gourine AV, Molosh AI, Poputnikov D, Bulhak A, Sjögquist PO, Pernow J. Endothelin-1 exerts a preconditioning-like cardioprotective effect against ischaemia/reperfusion injury via the ETA receptor and the mitochondrial KATP channel in the rat in vivo. Br J Pharmacol. 2005;144:331–337.


44 Callera GE, Montezano AC, Touyz RM, Zorn TM, Carvalho


© 1998 Springer-Verlag New York Inc. All Rights Reserved.


104 Clozel M, Breu V. The role of ET B receptors in normotensive and


