Antidepressant-like Effect of Fuzi Total Alkaloid on Ovariectomized Mice

Lei Liu1,2, Bingjin Li1,3,⁎a, Yang Zhou1, Liang Wang1, Fang Tang1, Dongyuan Shao1, Xiulan Jiang1, Hui Zhao1, Ranji Cui1,3,⁎b, and Yuxin Li1,2,⁎c

1Laboratory of Neuroscience, Physiology, 2Laboratory of Molecular and Cellular Physiology, 3Jilin Key Laboratory of Animal Resource Conservation and Utilization, School of Life Sciences, Northeast Normal University, Changchun 130024, China

Received July 23, 2012; Accepted October 9, 2012

Abstract. Recent studies in vivo and vitro have shown that Fuzi polysaccharide has an antidepressant-like effect. Polysaccharide and total alkaloid are the two most important components of Fuzi. However, little is known about the antidepressant-like effect of Fuzi total alkaloid. To investigate the antidepressant-like effect of Fuzi total alkaloid, behavioral studies were performed in the open field test and forced swimming test. Repeated intragastric administration of Fuzi total alkaloid for 7 days (10 mg/kg) to normal mice decreased immobility time compared to the vehicle group. Furthermore, repeated administration of Fuzi total alkaloid (10 or 30 mg/kg) to ovariectomized mice also decreased immobility time in a dose-dependent manner. However, these antidepressant-like behavioral effects were not simply due to locomotor hyperactivity. Further experiments showed that Fuzi total alkaloid enhanced the ratio of phospho-CREB/CREB (cAMP response element-binding) and BDNF (brain-derived neurotrophic factor) protein level in the frontal cortex and hippocampus in ovariectomized mice but not in normal mice. These results indicate that the CREB-BDNF pathway may be involved in the antidepressant-like effect of Fuzi total alkaloid in ovariectomized mice.

[Supplementary Figures: available only at http://dx.doi.org/10.1254/jphs.12163FP]

Keywords: alkaloid, ovariectomized mouse, forced swimming, BDNF (brain-derived neurotrophic factor)

Introduction

Depressive disorders are considered to be the most prevalent form of mental illness. It is estimated that one-tenth of the world population suffers from depression once in life (1). Fuzi (Radix Aconiti Lateralis Preparata) or its components is prescribed as treatment of depression frequently in Chinese medicine clinical practice (2, 3). It has been reported recently that Fuzi polysaccharide has an antidepressant-like effect (3). In addition to Fuzi polysaccharide, total alkaloid is a very abundant component of Fuzi (2). However, little is known about the antidepressant-like effect of Fuzi total alkaloid.

It is well known that antidepressant drugs up-regulate the CREB-BDNF (CREB, cAMP response element-binding; BDNF, brain-derived neurotrophic factor) pathway that contributes to the antidepressant activity, and CREB may act upstream of BDNF and is necessary for antidepressant-induced alterations in BDNF expression (4–6). Many studies demonstrate that CREB and phosphorylated CREB levels could be up regulated in rat and mouse brains during antidepressant administration (7–9). Therefore, these data indicate that phosphorylation of CREB protein is a common action of chronic antidepressant treatments that may lead to up-regulation of BDNF. On the other hand, in the past decades BDNF has been extensively studied and plays an important role in the maintenance and survival of neurons and in synaptic plasticity (4–6, 10, 11). The meta-analysis reveals that BDNF levels are lower in depressed subjects than in...
healthy controls (10), and BDNF mutant mice display a depressive phenotype when they are exposed to mild stress (11). Antidepressants restore both the level of BDNF and hippocampal size to the normal level (12). Furthermore, infusion of BDNF into the dentate gyrus produces antidepressant-like responses (4). These data indicate that BDNF play a critical role in depression. Recent studies have shown that the antidepressant-like effect of Fuzi polysaccharide is more associated with BDNF (3). However, the role of the CREB-BDNF pathway in the antidepressant-like behavior effect of Fuzi total alkaloid is unknown.

The incidence of depression in women is about twice than in men (13). Estrogen reduces depression-like behavior of aged female mice (14). Furthermore, CREB and BDNF levels seem to be higher with higher estrogen levels during the menstrual cycle and while using hormone therapy following menopause (15 – 17). These findings further suggest that menopausal depression may be related to down regulation of the CREB-BDNF pathway in the brain. Therefore, we hypothesize that BDNF could be responsible for the antidepressant-like behavior effect of Fuzi total alkaloid. The immobility time was significantly increased in ovariectomized mice (18 – 21), and they displayed depressant-like behavior. Therefore, ovariectomy is a useful tool for investigating menopausal depression (20, 21). In the present study, we investigated whether Fuzi total alkaloid has an antidepressant-like behavioral effect on immobility time in the ovariectomized mice. Additionally, we also determined the effect of Fuzi total alkaloid on the CREB-BDNF pathway in the brain.

Materials and Methods

Animals

ICR female mice (aged 6 – 10 weeks) were obtained from the Jilin University (Changchun, China). Mice were housed in plastic cages (25.5 × 15 × 14 cm), 23°C ± 1°C temperature, and kept under standard laboratory conditions of a 12-h light/dark cycle with free access to food and water. Behavioral studies were conducted during the light phase. All experiments were conducted in accordance with the Chinese Council on Animal Care Guidelines.

Drugs

Imipramine hydrochloride was purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). Imipramine (30 mg/kg, i.p.)-treated mice represent the positive control group as we previously reported (5, 6). Fuzi was purchased from a traditional Chinese medicinal store and was identified as reported (22). Fuzi total alkaloid was extracted according to a previous report (23, 24) and ingredient analysis was performed by Dr. Yue’s group who reported the ingredient analysis of Fuzi alkaloids before (24).

Purification and ingredient analysis

Purification of Fuzi total alkaloids: Purification procedures reported by Wang et al. (23) were followed with some modifications. The dried fruits of Fuzi (40 kg) were soaked in 95% ethanol and then sonicated for 45 min. The ethanol solution was separated from the solid residue by filtration and it was stored in a refrigerator (4°C) for further use. The ethanol extracts were evaporated at 60°C and then diluted 11-fold in 0.04% HCl. The resulting mixture was shaken vigorously for several minutes. Then the lower phase was separated and chloroform was added. The mixture was then washed twice with 0.04% HCl, and dried at 40°C by rotary vaporization under reduced pressure. The crude alkaloids were purified by silica gel column chromatography using the cyclohexane-ethanol (4:1) as the eluent to provide pure Fuzi total alkaloid (70 g).

HPLC–ESI–MS analysis: The Thermo Accela HPLC system (Waters Corporation, Milford, MA, USA) was used to characterize samples. HPLC/ESIMS/MS experiments were performed using a LTQ ion trap mass spectrometer (Thermo, Waltham, MA, USA) equipped with an electrospray source in the positive ion mode. The electrospray voltage was set to 4.5 kV. The capillary temperature was 250°C. The HPLC was connected to the mass spectrometer via the UV cell outlet. Nitrogen gas was used as both a sheath gas and an auxiliary gas. A Waters BEH C18 (1.7 μm, 3 mm × 100 mm) column was used. The mobile phase used for HPLC separation consisted of various proportions of methyl cyanide (A), methanol (B), and ammonium bicarbonate plus ammonium hydroxide (C, pH 10.5). The elution gradient was as follows: 0 – 138 min (0% A, 35% – 100% B, 65% – 0% C); 139 – 149 min (100% A, 0% B, 0% C); 150 – 155 min (0% A, 100% – 35% B, 0% – 65% C). The flow rate was set at 0.3 ml/min and the column temperature was maintained at 23°C. Total alkaloid was dissolved in chloroform plus methanol (1:1) and loaded to the column as previously reported (24).

Open field test

The ambulatory behavior was assessed in an open field test. For the open-field test, mice were individually placed in an acrylic apparatus (48.8 cm in diameter × 16-cm-high wall) with the gray floor divided into 19 equal squares. Horizontal locomotor activity (grid lines crossed with the four paws) and vertical locomotor activity (rearing) were calculated during a period of 6
Forced swim test
The forced swim test was performed 24 h after the last treatment of Fuzi total alkaloid for 7 days. It was carried out in a cylindrical container (11 cm in diameter, 25-cm-high) filled with water to the height of 20 cm. Water was maintained at 25°C ± 1°C. After swimming, animals were dried with a towel and kept warm before returning them to their home cage. Immobility times were recorded during the 6 min swim test using a digital video camera. The duration of immobility during the last 4 min of the trial (25 – 27) was measured by an observer who was kept unaware of the experimental conditions.

Tissue preparation
At the end of the treatment (24 h after the last treatment), the animals were sacrificed by decapitation. The brains were quickly removed and dissected on ice into the frontal cortex and hippocampus. Samples were frozen at −80°C before homogenization. Sections were homogenized in a lysis buffer [137 mM NaCl, 20 mM TRIS, 1% NP40, 10% glycerol, 1mM phenylmethylsulfonyl fluoride (PMSF), 10 μg/ml aprotinin, 1 μg/ml leupeptin, 0.5 mM sodium vanadate]. The homogenates were centrifuged at 10,000 × g for 20 min, and then the supernatants were collected and processed for quantification of BDNF with a BDNF Emax ImmunoAssay System kit (Promega, Madison, WI, USA).

Measurement of BDNF protein by enzyme-linked immunosorbent assay
Enzyme-linked immunosorbent assay (ELISA) was performed using the BDNF Emax Immuno Assay System Kit (Promega) according to the manufacturer’s instructions (26). Nunc Maxisorp 96 well immunoplates were coated with 100 μl/well of anti-BDNF monoclonal antibody (mAb) and incubated overnight at 4°C. The plates were incubated in a block and sample buffer at room temperature for 1 h. Then the samples were added to the coated wells (100 μl) and shaken for 2 h at room temperature. The antigen was incubated with an anti-Human BDNF polyclonal antibody (pAb) for 2 h at room temperature with shaking and then incubated with an anti-IgY antibody conjugated to horseradish peroxidase (HRP) for 1 h at room temperature. The plates were then incubated with tetramethylbenzidine solution for 15 min and 1 M hydrochloric acid was added to the wells. The colorimetric reaction product was measured at 450 nm. Standard curves were plotted for each plate. BDNF concentrations were determined from the regression line for the BDNF standard ranging from 7.8 to 500 pg/ml using the BDNF standard provided by Promega. Values of sections were above 16 pg/ml for each plate. More detailed information about the procedures are given in the previous reports (5, 6, 28).

Western blot of CREB and phospho-CREB (pCREB)
Tissue lysates containing CREB/pCREB were separated by 10% SDS-PAGE and transferred to a polyvinylidene difluoride (PVDF) membrane by electroblotting. CREB and pCREB were immunostained with phospho-CREB-ser133 (1:1000, rabbit polyclonal; Cell Signaling, Danvers, MA, USA) and CREB (1:1000, rabbit monoclonal; Cell Signaling). After several washes with TBST buffer, the membranes were incubated with the respective peroxidase labeled secondary antibodies (1:400; Solarbio, Beijing, China). Specific bands were quantified densitometrically and the ratio between the intensity of CREB and phospho-CREB from the same homogenate was calculated (29).

Statistical analyses
All values are presented as the means ± S.E.M. The significance of the data was analyzed using one-way analysis of variance (ANOVA). When significant differences were obtained, post hoc comparisons within logical sets of means were performed using Dunnett’s test. P-values less than 0.05 were considered significant.

Results
HPLC–ESI–MS analysis
In Table 1, HPLC–ESI–MS analysis shows the identified alkaloids in Fuzi total alkaloid (see ion chromatograms in Supplementary Figures, available in the online version only), and these data are consistent with those in the previous report (24).

Effect of repeated administration of Fuzi total alkaloid on body weight
Figure 1, A and B shows that 7-day repeated administration of Fuzi total alkaloid has no effect on body weight in the normal and ovariectomized mice. Furthermore, there is no body weight change in imipramine-treated mice that represent the positive control group.

Effect of repeated administration of Fuzi total alkaloid on body weight
In Fig. 2A, the immobility time is significantly shortened by repeated administration of total alkaloid at 10 mg/kg but not 3 and 30 mg/kg in the forced swim test (One-way ANOVA: F = 4.5, P < 0.01; post hoc Dunnett’s test: P < 0.05). Figure 2B shows that the immobility time is significantly enhanced in the ovariectomized
mice \((P < 0.01)\), and this enhancement was also inhibited by Fuzi total alkaloid in a dose-dependent manner \((10\, \text{mg/kg}, P < 0.05; 30\, \text{mg/kg}, P < 0.01)\). However, we did not observe the effect of imipramine in immobility time after 7 days treatment.

Effect of repeated administration of Fuzi total alkaloid on locomotor activity and rearing in the open field test

Figure 3, A and B show that repeated administration of Fuzi total alkaloid or imipramine has no effect on the locomotor activity and rearing in the open field test. It indicates that locomotor activity is not responsible for the decreasing effect of immobility time induced by Fuzi total alkaloid.

Effect of repeated administration of Fuzi total alkaloid on BDNF protein level in the brain

Figure 4A shows the effect of repeated administration of Fuzi total alkaloid on the BDNF protein level in the normal mouse brain. Total alkaloid did not alter the BDNF protein level in the hippocampus and frontal cortex of normal mice as shown in Fig. 4A. However, BDNF significantly decreased in the ovariectomized mice \((P < 0.05)\), and repeated administration of Fuzi total alkaloid at 10 and 30 mg/kg significantly elevated BDNF protein level in the frontal cortex and hippocampus of ovariectomized mice compared to the control group as shown in Fig. 4B (frontal cortex One-way ANOVA: \(F = 4.55, P < 0.01\); Dunnett’s test, 10 mg/kg: \(t = 3.20, P < 0.05\); 30 mg/kg: \(t = 3.22, P < 0.05\) and hippocampus One-way ANOVA: \(F = 5.729, P < 0.001\); Dunnett’s test, 10 mg/kg: \(t = 3.675, P < 0.05\); 30 mg/kg: \(t = 3.163, P < 0.05\)).

Effect of repeated administration of Fuzi total alkaloid on the ratio of pCREB/CREB in the brain

Figure 5A shows that Fuzi total alkaloid or imipramine did not change the ratio of the pCREB/CREB in the normal mice. In Fig. 5B, the ratio of pCREB/CREB was significantly reduced in the ovariectomized mice \((P < 0.05)\), and Fuzi total alkaloid (10 or 30 mg/kg) and imipramine (30 mg/kg) tended to increase the ratio of pCREB/CREB in the frontal cortex and significantly increased it in the hippocampus in the ovariectomized mice (One-way ANOVA: \(P < 0.05\)). In the frontal cortex, Fuzi (3, 10, and 30 mg/kg) dose dependently increased the ratio of pCREB/CREB (Dunnett’s test: 3 mg/kg, \(P < 0.05\); 10 mg/kg, \(P < 0.05\); 30 mg/kg, \(P < 0.05\)) compared to the ovariectomized mice with vehicle treatment. In the hippocampus, Fuzi at 10 or 30 mg/kg and imipramine at 30 mg/kg significantly increased BDNF compared to the ovariectomized mice as the control group (Dunnett’s test: 10 mg/kg, \(P < 0.05\); 30 mg/kg, \(P < 0.05\); imipramine, \(P < 0.01\)).

Table 1. Alkaloids identified in Fuzi total alkaloid by HPLC–ESI–MS

<table>
<thead>
<tr>
<th>No.</th>
<th>tR</th>
<th>[M+H]+</th>
<th>Alkaloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.56</td>
<td>858</td>
<td>8-esp-Benzoylhypaconine, 8-pal-10-OH-Benzoylmesaconine</td>
</tr>
<tr>
<td>2</td>
<td>68.67</td>
<td>854</td>
<td>8-ndc-Benzoylhypaconine, 8-ole-Benzoylmesaconine</td>
</tr>
<tr>
<td>3</td>
<td>67.36</td>
<td>852</td>
<td>8-ndn-Benzoylhypaconine, 8-lino-Benzoylmesaconine, 8-ole-Benzoyldeoxyaconine</td>
</tr>
<tr>
<td>4</td>
<td>111.19</td>
<td>822</td>
<td>8-ole-Benzoyl-15-deoxyhapponine</td>
</tr>
<tr>
<td>5</td>
<td>64.06</td>
<td>798</td>
<td>8-pdc-Benzoylhydroponine</td>
</tr>
<tr>
<td>6</td>
<td>42.92</td>
<td>770</td>
<td>unknown</td>
</tr>
<tr>
<td>7</td>
<td>26.01</td>
<td>700</td>
<td>unknown</td>
</tr>
<tr>
<td>8</td>
<td>72.50</td>
<td>668</td>
<td>unknown</td>
</tr>
<tr>
<td>9</td>
<td>54.82</td>
<td>662</td>
<td>10-OH-aconitine</td>
</tr>
<tr>
<td>10</td>
<td>74.39</td>
<td>648</td>
<td>10-OH-mesaconitine</td>
</tr>
<tr>
<td>11</td>
<td>86.82</td>
<td>632</td>
<td>Mesaconitine</td>
</tr>
<tr>
<td>12</td>
<td>44.41</td>
<td>614</td>
<td>3,13-Deoxyacetonitine, Chasmaconitine</td>
</tr>
<tr>
<td>13</td>
<td>63.15</td>
<td>558</td>
<td>14-Benzoyl-3,13-deoxyaconine</td>
</tr>
<tr>
<td>14</td>
<td>71.95</td>
<td>464</td>
<td>14-Acetyltalatizamine</td>
</tr>
<tr>
<td>15</td>
<td>43.42</td>
<td>454</td>
<td>Fuziline</td>
</tr>
<tr>
<td>16</td>
<td>40.02</td>
<td>452</td>
<td>Chasmanine</td>
</tr>
</tbody>
</table>

Pal, pdc, lino, ole, ndn, ndc, and esp represent the residues of palmitic acid, pentadecanoic acid, linoleic acid, oleic acid, nonadecenoic acid, nonadecanoic acid, and eicosapentaenoic acid, respectively.
Discussion

Recent studies in vivo and vitro have shown that Fuzi polysaccharide has antidepressant-like effect (3). Polysaccharide and total alkaloid are the two most important components of Fuzi (2, 3). However, little is known about the antidepressant-like effect of Fuzi total alkaloid. In the present study, we have demonstrated that repeated administration (7 days) of Fuzi total alkaloid significantly reduces the immobility time in the normal mice. Decrease of immobility time was not directly due to locomotor activity. These data indicate that Fuzi total alkaloid has an antidepressant-like effect. To further examine the antidepressant-like behavioral effects of Fuzi total alkaloid, it was administered to ovariectomized mice, which is a useful tool for investigating menopausal depression (20, 21). It has been extensively studied that ovariectomy decreases estrogen level in the rodent (15, 16). The prolongation of immobility shown in the forced swim test in mice after ovariectomy is also consistent with the previous study (20, 21). Furthermore, the prolongation of immobility was also inhibited by repeated administration of Fuzi total alkaloid. These results support the antidepressant-like behavior effects of Fuzi total alkaloid in the ovariectomized mice. In addition, we did not observe the antidepressant effect of imipramine as a positive control drug in this study, but previous reports of another laboratory and our group indicated that imipramine shows an antidepressant effect after at least 14 days administration (5, 30). However, in the present study imipramine was administered for 7 days. Lalremruta et al. (31) also shows that immobility time was also not affected by 7 days of imipramine administration as a positive control drug, but 14 and 21 days of imipramine treatment reduced immobility time significantly. These findings are consistent to our present data and previous

![Fig. 1. Effect of repeated administration of Fuzi total alkaloid (FTA) on body weight. A: Effect of repeated administration of FTA on body weight in the normal mice. Columns represent the mean ± S.E.M.; Imi, imipramine; n = 8 per group. B: Effect of repeated administration of FTA on body weight in the ovariectomized (OV) mice. Columns represent the mean ± S.E.M.; Imi, imipramine; n = 7 – 10 per group.](image1)

![Fig. 2. Effect of repeated administration of FTA on immobility time. A: Effect of repeated administration of FTA on immobility time in the normal mice. Columns represent the mean ± S.E.M.; n = 8 per group; Imi, imipramine; **P < 0.01. B: Effect of repeated administration of FTA on immobility time in the OV mice. Columns represent the mean ± S.E.M.; Imi, imipramine; n = 7 – 10 per group; *P < 0.05, **P < 0.01, ***P < 0.01.](image2)
report (5). However, the effect of imipramine in 7 and 14 days of treatment requires further exploration. This data also means that Fuzi total alkaloid has a faster antidepressant-like effect compared to imipramine. Another interesting finding is that middle doses (30 mg/kg) of Fuzi total alkaloid show an antidepressant-like effect but not low doses (10 mg/kg) or high doses (30 mg/kg). Fuzi total alkaloid maybe has dual action like some drugs, such as nicotine. Therefore, this may explain why middle dose of Fuzi total alkaloid could cause antidepressant-like but not high doses, and low doses of Fuzi total alkaloid is too low to induce this kind of effect.

Many studies have shown that the CREB-BDNF pathway was involved in the depression (4, 5, 17). We found that the CREB-BDNF pathway was down-regulated significantly in ovariectomized mice, and the CREB and BDNF level in the hippocampus and frontal cortex was raised by Fuzi total alkaloid in the ovariectomized mice but not normal mice. These data indicate that the mechanism of the antidepressant-like effect of Fuzi total alkaloid may be different in normal mice from that in ovariectomized mice. It is also consistent with previous reports that estrogen modulates the CREB and BDNF level in the adult hippocampus and cortex (17, 32 – 35). Therefore, the CREB-BDNF pathway is responsible for the antidepressant-like behavioral effects of the total al-
Total alkaloid and polysaccharide are the two most important components of Fuzi. We have found that acute administration of Fuzi total alkaloid and polysaccharide has no antidepressant-like effect in our study (data not shown here) and other ones (3). However, in the chronic study, Fuzi total alkaloid showed the antidepressant-like effect more rapidly (7 days) in our studies compared to the data of polysaccharide (14 – 28 days) (3), which suggests that Fuzi total alkaloid has a more rapid action, while polysaccharide has a long-lasting effect. Furthermore, we also observed that the effect of the hippocampus and frontal cortex was involved in the antidepressant-like effect of Fuzi total alkaloid, and hippocampus is more responsible for the effect of polysaccharide (3). This may be the reason why Fuzi total alkaloid has more rapid action via influence of more brain regions.

In summary, Fuzi total alkaloid has an antidepressant-like effect, and particularly the CREB-BDNF pathway is likely responsible for antidepressant-like effect in the ovariectomized mice.

Acknowledgments

This work was supported in part by the Fundamental Research Funds for the Central Universities (10QNJJ013; 11CXY009), Jilin Science and Technology Agency funding (20110726), and Natural Science Foundation of China (31171123).

References

4. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS. Brain-derived neurotrophic factor produces antidepressant ef-
6 Li B, Suemaru K, Cui R, Araki H. Repeated electroconvulsive stimuli have long-lasting effects on hippocampal BDNF and decrease immobility time in the rat forced swim test. Life Sci. 2007;80:1539–1543.